Abstract In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $$R^{2}$$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.
more »
« less
D-MANOVA: fast distance-based multivariate analysis of variance for large-scale microbiome association studies
Abstract Summary PERMANOVA (permutational multivariate analysis of variance based on distances) has been widely used for testing the association between the microbiome and a covariate of interest. Statistical significance is established by permutation, which is computationally intensive for large sample sizes. As large-scale microbiome studies, such as American Gut Project (AGP), become increasingly popular, a computationally efficient version of PERMANOVA is much needed. To achieve this end, we derive the asymptotic distribution of the PERMANOVA pseudo-F statistic and provide analytical P-value calculation based on chi-square approximation. We show that the asymptotic P-value is close to the PERMANOVA P-value even under a moderate sample size. Moreover, it is more accurate and an order-of-magnitude faster than the permutation-free method MDMR. We demonstrated the use of our procedure D-MANOVA on the AGP dataset. Availability and implementation D-MANOVA is implemented by the dmanova function in the CRAN package GUniFrac. Supplementary information Supplementary data are available at Bioinformatics online.
more »
« less
- PAR ID:
- 10282829
- Editor(s):
- Schwartz, Russell
- Date Published:
- Journal Name:
- Bioinformatics
- ISSN:
- 1367-4803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract SummaryDue to the sparsity and high dimensionality, microbiome data are routinely summarized into pairwise distances capturing the compositional differences. Many biological insights can be gained by analyzing the distance matrix in relation to some covariates. A microbiome sampling method that characterizes the inter-sample relationship more reproducibly is expected to yield higher statistical power. Traditionally, the intraclass correlation coefficient (ICC) has been used to quantify the degree of reproducibility for a univariate measurement using technical replicates. In this work, we extend the traditional ICC to distance measures and propose a distance-based ICC (dICC). We derive the asymptotic distribution of the sample-based dICC to facilitate statistical inference. We illustrate dICC using a real dataset from a metagenomic reproducibility study. Availability and implementationdICC is implemented in the R CRAN package GUniFrac. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
We are interested in testing general linear hypotheses in a high-dimensional multivariate linear regression model. The framework includes many well-studied problems such as two-sample tests for equality of population means, MANOVA and others as special cases. A family of rotation-invariant tests is proposed that involves a flexible spectral shrinkage scheme applied to the sample error covariance matrix. The asymptotic normality of the test statistic under the null hypothesis is derived in the setting where dimensionality is comparable to sample sizes, assuming the existence of certain moments for the observations. The asymptotic power of the proposed test is studied under various local alternatives. The power characteristics are then utilized to propose a data-driven selection of the spectral shrinkage function. As an illustration of the general theory, we construct a family of tests involving ridge-type regularization and suggest possible extensions to more complex regularizers. A simulation study is carried out to examine the numerical performance of the proposed tests.more » « less
-
Abstract BackgroundChildren are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity. MethodsWe collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms. ResultsNasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2–infected individuals with and without respiratory symptoms (PERMANOVA, P = .002; R2 = 0.009). SARS-CoV-2–infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18–.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2–infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age. ConclusionsWe identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.more » « less
-
Abstract MotivationLearning associations of traits with the microbial composition of a set of samples is a fundamental goal in microbiome studies. Recently, machine learning methods have been explored for this goal, with some promise. However, in comparison to other fields, microbiome data are high-dimensional and not abundant; leading to a high-dimensional low-sample-size under-determined system. Moreover, microbiome data are often unbalanced and biased. Given such training data, machine learning methods often fail to perform a classification task with sufficient accuracy. Lack of signal is especially problematic when classes are represented in an unbalanced way in the training data; with some classes under-represented. The presence of inter-correlations among subsets of observations further compounds these issues. As a result, machine learning methods have had only limited success in predicting many traits from microbiome. Data augmentation consists of building synthetic samples and adding them to the training data and is a technique that has proved helpful for many machine learning tasks. ResultsIn this paper, we propose a new data augmentation technique for classifying phenotypes based on the microbiome. Our algorithm, called TADA, uses available data and a statistical generative model to create new samples augmenting existing ones, addressing issues of low-sample-size. In generating new samples, TADA takes into account phylogenetic relationships between microbial species. On two real datasets, we show that adding these synthetic samples to the training set improves the accuracy of downstream classification, especially when the training data have an unbalanced representation of classes. Availability and implementationTADA is available at https://github.com/tada-alg/TADA. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government

