Reaction–diffusion equations are commonly used to model a diverse array of complex systems, including biological, chemical, and physical processes. Typically, these models are phenomenological, requiring the fitting of parameters to experimental data. In the present work, we introduce a novel formalism to construct reaction–diffusion models that is grounded in the principle of maximum entropy. This new formalism aims to incorporate various types of experimental data, including ensemble currents, distributions at different points in time, or moments of such. To this end, we expand the framework of Schrödinger bridges and maximum caliber problems to nonlinear interacting systems. We illustrate the usefulness of the proposed approach by modeling the evolution of (i) a morphogen across the fin of a zebrafish and (ii) the population of two varieties of toads in Poland, so as to match the experimental data.
more »
« less
Inferring phenomenological models of first passage processes
Biochemical processes in cells are governed by complex networks of many chemical species interacting stochastically in diverse ways and on different time scales. Constructing microscopically accurate models of such networks is often infeasible. Instead, here we propose a systematic framework for building phenomenological models of such networks from experimental data, focusing on accurately approximating the time it takes to complete the process, the First Passage (FP) time. Our phenomenological models are mixtures of Gamma distributions, which have a natural biophysical interpretation. The complexity of the models is adapted automatically to account for the amount of available data and its temporal resolution. The framework can be used for predicting behavior of FP systems under varying external conditions. To demonstrate the utility of the approach, we build models for the distribution of inter-spike intervals of a morphologically complex neuron, a Purkinje cell, from experimental and simulated data. We demonstrate that the developed models can not only fit the data, but also make nontrivial predictions. We demonstrate that our coarse-grained models provide constraints on more mechanistically accurate models of the involved phenomena.
more »
« less
- PAR ID:
- 10282951
- Editor(s):
- Faeder, James R.
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1008740
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We propose a new algorithm for inference of protein-protein interaction (PPI) networks from noisy time series of Liquid- Chromatography Mass-Spectrometry (LC-MS) proteomic expression data based on Approximate Bayesian Computation - Sequential Monte Carlo sampling (ABC-SMC). The algorithm is an extension of our previous framework PALLAS. The proposed algorithm can be easily modified to handle other complex models of expression data, such as LC-MS data, for which the likelihood function is intractable. Results based on synthetic time series of cytokine LC-MS measurements cor- responding to a prototype immunomic network demonstrate that our algorithm is capable of inferring the network topology accurately.more » « less
-
Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data.more » « less
-
null (Ed.)Artificial neural networks (NNs) in deep learning systems are critical drivers of emerging technologies such as computer vision, text classification, and natural language processing. Fundamental to their success is the development of accurate and efficient NN models. In this article, we report our work on Deep-n-Cheap—an open-source automated machine learning (AutoML) search framework for deep learning models. The search includes both architecture and training hyperparameters and supports convolutional neural networks and multi-layer perceptrons, applicable to multiple domains. Our framework is targeted for deployment on both benchmark and custom datasets, and as a result, offers a greater degree of search space customizability as compared to a more limited search over only pre-existing models from literature. We also introduce the technique of ‘search transfer’, which demonstrates the generalization capabilities of the models found by our framework to multiple datasets. Deep-n-Cheap includes a user-customizable complexity penalty which trades off performance with training time or number of parameters. Specifically, our framework can find models with performance comparable to state-of-the- art while taking 1–2 orders of magnitude less time to train than models from other AutoML and model search frameworks. Additionally, we investigate and develop insight into the search process that should aid future development of deep learning models.more » « less
-
Aggressive and accurate control of complex dynamical systems, such as soft robots, is especially challenging due to the difficulty of obtaining an accurate and tractable model for real-time control. Learned dynamic models are incredibly useful because they do not require derivation of an analytical model, they can represent complex, nonlinear behavior directly from data, and they can be evaluated quickly on graphics-processing units (GPUs). In this paper, we present an open-source Python library to further current research in model-based control of soft robot systems. Our library for Modeling of Learned Dynamics (MoLDy), is designed to generate learned forward models of complex systems through a data-driven approach to hyperparameter optimization and learned model training. Included in the MoLDy library, we present an open-source version of NEMPC (Nonlinear Evolutionary Model Predictive Control), a previously published control algorithm validated on soft robots. We demonstrate the ability of MoLDy and NEMPC to accurately perform modelbased control on a physical pneumatic continuum joint. We also present a benchmarking study on the effect of the loss metric used in model training on control performance. The results of this paper serve to guide other researchers in creating learned dynamic models of novel systems and using them in closed-loop control tasks.more » « less
An official website of the United States government

