Embodied cognition posits that human-environment interac- tion positively impacts thinking and learning, making it a valuable ped- agogical tool. Technology in teaching and learning has seen tremendous maturation, such as the development of Intelligent Tutoring Systems (ITS). However, most ITS provide static learning experiences that do not incorporate embodiment, movement, and interaction with the space around the learner. This paper examines the results of using an embod- ied tutoring system across three case studies with different dimensions of embodiment. In all cases, we found trends highlighting how embodied tutoring systems can support learning. We also discuss different ways to incorporate embodiment into future research on ITS.
Embodied cognition posits that human-environment interaction positively impacts thinking and learning, making it a valuable pedagogical tool. Technology in teaching and learning has seen tremendous maturation, such as the development of Intelligent Tutoring Systems (ITS). However, most ITS provide static learning experiences that do not incorporate embodiment, movement, and interaction with the space around the learner. This paper examines the results of using an embodied tutoring system across three case studies with different dimensions of embodiment. In all cases, we found trends highlighting how embodied tutoring systems can support learning. We also discuss different ways to incorporate embodiment into future research on ITS.
Upadhyay, Shriyash; Ginsberg, Etan; Callison-Burch, Chris
(, Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023))
Large language models can solve reasoning tasks (like math problems) more effectively when they are allowed to generate rationales. However, a good tutoring system should not just generate solutions, but should also generate explanations and should be able to correct and guide students. We show that providing a code scratchpad improves performance on each tutoring step with a gradeschool mathematics dataset. On these tutoring tasks, GPT-3 models provided with a code scratchpad significantly outperform those given only a language scratchpad (77.7% vs 48.7% cumulative accuracy).
A s m or e e d u c at or s i nt e gr at e t h eir c urri c ul a wit h o nli n e l e ar ni n g, it i s e a si er t o cr o w d s o ur c e c o nt e nt fr o m t h e m. Cr o w ds o ur c e d t ut ori n g h a s b e e n pr o v e n t o r eli a bl y i n cr e a s e st u d e nt s’ n e xt pr o bl e m c orr e ct n e s s. I n t hi s w or k, w e c o n fir m e d t h e fi n di n g s of a pr e vi o u s st u d y i n t hi s ar e a, wit h str o n g er c o n fi d e n c e m ar gi n s t h a n pr e vi o u sl y, a n d r e v e al e d t h at o nl y a p orti o n of cr o w d s o ur c e d c o nt e nt cr e at or s h a d a r eli a bl e b e n e fit t o st ud e nt s. F urt h er m or e, t hi s w or k pr o vi d e s a m et h o d t o r a n k c o nt e nt cr e at or s r el ati v e t o e a c h ot h er, w hi c h w a s u s e d t o d et er mi n e w hi c h c o nt e nt cr e at or s w er e m o st eff e cti v e o v er all, a n d w hi c h c o nt e nt cr e at or s w er e m o st eff e cti v e f or s p e ci fi c gr o u p s of st u d e nt s. W h e n e x pl ori n g d at a fr o m Te a c h er A SSI S T, a f e at ur e wit hi n t h e A S SI S T m e nt s l e ar ni n g pl atf or m t h at cr o w d s o ur c e s t ut ori n g fr o m t e a c h er s, w e f o u n d t h at w hil e o v erall t hi s pr o gr a m pr o vi d e s a b e n e fit t o st u d e nt s, s o m e t e a c h er s cr e at e d m or e eff e cti v e c o nt e nt t h a n ot h er s. D e s pit e t hi s fi n di n g, w e di d n ot fi n d e vi d e n c e t h at t h e eff e cti v e n e s s of c o nt e nt r eli a bl y v ari e d b y st u d e nt k n o wl e d g e-l e v el, s u g g e sti n g t h at t h e c o nt e nt i s u nli k el y s uit a bl e f or p er s o n ali zi n g i n str u cti o n b a s e d o n st u d e nt k n o wl e d g e al o n e. T h e s e fi n di n g s ar e pr o mi si n g f or t h e f ut ur e of cr o w d s o ur c e d t ut ori n g a s t h e y h el p pr o vi d e a f o u n d ati o n f or a s s e s si n g t h e q u alit y of cr o w d s o ur c e d c o nt e nt a n d i n v e sti g ati n g c o nt e nt f or o p p ort u niti e s t o p er s o n ali z e st u d e nt s’ e d u c ati o n.
@article{osti_10282968,
place = {Country unknown/Code not available},
title = {Online Tutoring Through a Cloud-Based Virtual Tutoring Center},
url = {https://par.nsf.gov/biblio/10282968},
DOI = {10.1007/978-3-030-59635-4_20},
abstractNote = {},
journal = {Cloud Computing – CLOUD 2020. CLOUD 2020. Lecture Notes in Computer Science},
volume = {12403},
author = {Hu, X. and Tabdil, S.D. and Achhe, M. and Pan, Y. and Bourgeois, A.G.},
editor = {Zhang, Q. and Wang, Y. and Zhang, LJ.}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.