skip to main content


Title: Toward Personalizing Students' Education with Crowdsourced Tutoring
A s m or e e d u c at or s i nt e gr at e t h eir c urri c ul a wit h o nli n e l e ar ni n g, it i s e a si er t o cr o w d s o ur c e c o nt e nt fr o m t h e m. Cr o w ds o ur c e d t ut ori n g h a s b e e n pr o v e n t o r eli a bl y i n cr e a s e st u d e nt s’ n e xt pr o bl e m c orr e ct n e s s. I n t hi s w or k, w e c o n fir m e d t h e fi n di n g s of a pr e vi o u s st u d y i n t hi s ar e a, wit h str o n g er c o n fi d e n c e m ar gi n s t h a n pr e vi o u sl y, a n d r e v e al e d t h at o nl y a p orti o n of cr o w d s o ur c e d c o nt e nt cr e at or s h a d a r eli a bl e b e n e fit t o st ud e nt s. F urt h er m or e, t hi s w or k pr o vi d e s a m et h o d t o r a n k c o nt e nt cr e at or s r el ati v e t o e a c h ot h er, w hi c h w a s u s e d t o d et er mi n e w hi c h c o nt e nt cr e at or s w er e m o st eff e cti v e o v er all, a n d w hi c h c o nt e nt cr e at or s w er e m o st eff e cti v e f or s p e ci fi c gr o u p s of st u d e nt s. W h e n e x pl ori n g d at a fr o m Te a c h er A SSI S T, a f e at ur e wit hi n t h e A S SI S T m e nt s l e ar ni n g pl atf or m t h at cr o w d s o ur c e s t ut ori n g fr o m t e a c h er s, w e f o u n d t h at w hil e o v erall t hi s pr o gr a m pr o vi d e s a b e n e fit t o st u d e nt s, s o m e t e a c h er s cr e at e d m or e eff e cti v e c o nt e nt t h a n ot h er s. D e s pit e t hi s fi n di n g, w e di d n ot fi n d e vi d e n c e t h at t h e eff e cti v e n e s s of c o nt e nt r eli a bl y v ari e d b y st u d e nt k n o wl e d g e-l e v el, s u g g e sti n g t h at t h e c o nt e nt i s u nli k el y s uit a bl e f or p er s o n ali zi n g i n str u cti o n b a s e d o n st u d e nt k n o wl e d g e al o n e. T h e s e fi n di n g s ar e pr o mi si n g f or t h e f ut ur e of cr o w d s o ur c e d t ut ori n g a s t h e y h el p pr o vi d e a f o u n d ati o n f or a s s e s si n g t h e q u alit y of cr o w d s o ur c e d c o nt e nt a n d i n v e sti g ati n g c o nt e nt f or o p p ort u niti e s t o p er s o n ali z e st u d e nt s’ e d u c ati o n.  more » « less
Award ID(s):
1822830 1931523 1724889 1931419 1940236
NSF-PAR ID:
10284890
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Lerning @ Scale 2021
Page Range / eLocation ID:
37 to 45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A gr e at d e al of i nt er e st s urr o u n d s t h e u s e of tr a n s cr a ni al dir e ct c urr e nt sti m ul ati o n (t D C S) t o a u g m e nt c o g niti v e tr ai ni n g. H o w e v er, eff e ct s ar e i n c o n si st e nt a cr o s s st u di e s, a n d m et aa n al yti c e vi d e n c e i s mi x e d, e s p e ci all y f o r h e alt h y, y o u n g a d ult s. O n e m aj or s o ur c e of t hi s i n c o n si st e n c y i s i n di vi d u al diff er e n c e s a m o n g t h e p arti ci p a nt s, b ut t h e s e diff er e n c e s ar e r ar el y e x a mi n e d i n t h e c o nt e xt of c o m bi n e d tr ai ni n g/ sti m ul ati o n st u di e s. I n a d diti o n, it i s u n cl e ar h o w l o n g t h e eff e ct s of sti m ul ati o n l a st, e v e n i n s u c c e s sf ul i nt er v e nti o n s. S o m e st u di e s m a k e u s e of f oll o w- u p a s s e s s m e nt s, b ut v er y f e w h a v e m e a s ur e d p erf or m a n c e m or e t h a n a f e w m o nt hs aft er a n i nt er v e nti o n. H er e, w e utili z e d d at a fr o m a pr e vi o u s st u d y of t D C S a n d c o g niti v e tr ai ni n g [ A u, J., K at z, B., B u s c h k u e hl, M., B u n arj o, K., S e n g er, T., Z a b el, C., et al. E n h a n ci n g w or ki n g m e m or y tr ai ni n g wit h tr a n scr a ni al dir e ct c urr e nt sti m ul ati o n. J o u r n al of C o g niti v e N e u r os ci e n c e, 2 8, 1 4 1 9 – 1 4 3 2, 2 0 1 6] i n w hi c h p arti ci p a nts tr ai n e d o n a w or ki n g m e m or y t as k o v er 7 d a y s w hil e r e c ei vi n g a cti v e or s h a m t D C S. A n e w, l o n g er-t er m f oll o w- u p t o a ss es s l at er p erf or m a n c e w a s c o n d u ct e d, a n d a d diti o n al p arti ci p a nt s w er e a d d e d s o t h at t h e s h a m c o n diti o n w a s b ett er p o w er e d. W e a s s e s s e d b a s eli n e c o g niti v e a bilit y, g e n d er, tr ai ni n g sit e, a n d m oti v ati o n l e v el a n d f o u n d si g nifi c a nt i nt er a cti o ns b et w e e n b ot h b as eli n e a bilit y a n d m oti v ati o n wit h c o n diti o n ( a cti v e or s h a m) i n m o d els pr e di cti n g tr ai ni n g g ai n. I n a d diti o n, t h e i m pr o v e m e nt s i n t h e a cti v e c o nditi o n v er s u s s h a m c o n diti o n a p p e ar t o b e st a bl e e v e n a s l o n g a s a y e ar aft er t h e ori gi n al i nt er v e nti o n. ■ 
    more » « less
  2. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less
  3. A s a c om pl e men t t o da ta d edupli cat ion , de lta c om p ress i on fu r- t he r r edu c es t h e dat a vo l u m e by c o m pr e ssi n g n o n - dup li c a t e d ata chunk s r e l a t iv e to t h e i r s i m il a r chunk s (bas e chunk s). H ow ever, ex is t i n g p o s t - d e dup li c a t i o n d e l t a c o m pr e ssi o n a p- p ro a ches fo r bac kup s t or ag e e i t h e r su ffe r f ro m t h e l ow s i m - il a r i t y b e twee n m any de te c ted c hun ks o r m i ss so me po t e n - t i a l s i m il a r c hunks , o r su ffer f r om l ow (ba ckup and r es t ore ) th r oug hpu t du e t o extr a I/ Os f or r e a d i n g b a se c hun ks o r a dd a dd i t i on a l s e r v i c e - d i s r up t ive op e r a t i on s to b a ck up s ys t em s. I n t h i s pa p e r, w e pr opo se L oop D e l t a t o a dd ress the above - m e n t i on e d prob l e m s by an e nha nced em b e ddi n g d e l t a c o m p - r e ss i on sc heme i n d e dup li c a t i on i n a non - i n t ru s ive way. T h e e nha nce d d elt a c o mpr ess ion s che m e co m b in e s f our key t e c h - ni qu e s : (1) du a l - l o c a li t y - b a s e d s i m il a r i t y t r a c k i n g to d e t ect po t e n t i a l si m il a r chun k s b y e x p l o i t i n g both l o g i c a l and ph y - s i c a l l o c a li t y, ( 2 ) l o c a li t y - a wa r e pr e f e t c h i n g to pr efe tc h ba se c hun ks to a vo i d ex t ra I/ Os fo r r e a d i n g ba s e chun ks on t h e w r i t e p at h , (3) c a che -aware fil t e r to avo i d ext r a I/Os f or b a se c hunk s on t he read p at h, a nd (4) i nver sed de l ta co mpressi on t o perf orm de lt a co mpress i o n fo r d at a chunk s t hat a re o th e r wi se f o r b i dd e n to s er ve as ba se c hunk s by r ew r i t i n g t e c hn i qu e s d e s i g n e d t o i m p r ove r es t o re pe rf o rma nc e. E x p e r i m e n t a l re su lts indi ca te t hat L oop D e l t a i ncr ea se s t he c o m pr e ss i o n r a t i o by 1 .2410 .97 t i m e s on t op of d e dup li c a - t i on , wi t hou t no t a b l y a ffe c t i n g th e ba ck up th rou ghpu t, a nd i t i m p r ove s t he res to re p er fo r m an ce b y 1.23.57 t i m e 
    more » « less
  4. Modèle Atmosphérique Régional (MAR) is a regional climate model that is fully coupled to a one-dimensional surface-atmosphere energy and mass transfer scheme, SISVAT (Soil Ice Snow Vegetation Atmosphere Transfer) (Fettweis et al., 2005, 2020; Lefebre et al., 2005). SISVAT employs a multilayered snowpack model, CROCUS, that simulates meltwater production, percolation, and refreeze (Brun et al., 1989), while also accounting for changes in albedo due to snow metamorphism (Brun et al., 1992). MAR has been extensively verified over the Greenland Ice Sheet and is therefore particularly well suited for analyses of Greenland ice sheet surface mass balance (Fettweis et al., 2011; Fettweis et al., 2020; Lefebre et al. 2005; Mattingly et al. 2020). Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C. (1989). An energy and mass model of snow cover suitable for operational avalanche forecasting. Journal of Glaciology, 35, 333. https://doi.org/10.1017/S0022143000009254 Brun, E., David, P., Sudul, M., and Brunot, G. (1992). A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. Journal of Glaciology, 38(128), 13–22. https://doi.org/10.3189/S0022143000009552 Fettweis, X., Gallée, H., Lefebre, F., and van Ypersele, J.-P. (2005). Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991. Climate Dynamics, 24(6), 623–640. https://doi.org/10.1007/s00382-005-0010-y Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J. (2011). Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. The Cryosphere, 5(2), 359–375. https://doi.org/10.5194/tc-5-359-2011 Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., et al. (2020). GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14(11), 3935–3958. https://doi.org/10.5194/tc-14-3935-2020 Lefebre, F., Fettweis, X., Gallée, H., Van Ypersele, J.-P., Marbaix, P., Greuell, W., and Calanca, P. (2005). Evaluation of a high-resolution regional climate simulation over Greenland. Climate Dynamics, 25(1), 99–116. https://doi.org/10.1007/s00382-005-0005-8 Mattingly, K. S., Mote, T. L., Fettweis, X., van As, D., Van Tricht, K., Lhermitte, S., et al. (2020). Strong summer atmospheric rivers trigger Greenland ice sheet melt through spatially varying surface energy balance and cloud regimes. Journal of Climate, 33(16), 6809–6832. https://doi.org/10.1175/JCLI-D-19-0835.1 
    more » « less
  5. The granitic water-saturated solidus (G-WSS) is the lower temperature limit of magmatic mineral crystallization. The accepted water-saturated solidus for granitic compositions was largely determined >60 years ago1. More recent advances in experimental petrology, improved analytical techniques, and recent observations that granitic systems can remain active or spend a significant proportion of their lives at conditions below the traditional G-WSS2–5 necessitate a careful experimental investigation of the near-solidus regions of granitic systems. Natural and synthetic starting materials were melted at 10 kbar and 900°C with 48 wt% H2O to produce hydrous glasses for subsequent experiments at lower PT conditions used to locate the G-WSS. We performed crystallization experiments and melting experiments at temperatures ranging from 575 to 800°C and 1, 6, 8, and 10 kbar on 12 granitoid compositions. First, we ran a series of isothermal crystallization experiments along each isobar at progressively lower temperatures until runs completely crystallized to identify apparent solidus temperatures. Geochemical analyses of quenched glass compositions demonstrate that progressive crystallization drives all starting compositions towards silica-rich, water-saturated rhyolitic/granitic melts (e.g., ~7578 wt% SiO2). After identifying the apparent solidus temperatures at which the various compositions crystallized, we then ran series of reversal-type melting experiments. With the goal of producing rocks with hydrous equilibrium microstructures, we crystallized compositions at temperatures ~10°C below the apparent solidus identified in crystallization experiments, and then heated isobarically to conditions that produced ~20% melt during the crystallization experiments. Importantly, crystallization experiments and heating experiments at the same PT conditions produced similar proportions of melt, crystals, and vapor. A time-series of experiments 230 days at PT conditions previously identified to produce ~10% to 20% melt did not reveal any kinetic effects on melt crystallization. Experiments at 6 to 10 kbar crystallized/melted at temperatures close to the published G-WSS. However, at lower pressures where the published G-WSS is strongly curved in PT space, all compositions investigated contained melt to temperatures ~75 to 100°C below the accepted G-WSS. The similarity of crystallization temperatures for the higher-pressure experiments to previously published results, similar phase proportions in melting and crystallization experiments, and the lack of kinetic effects on crystallization collectively suggest that our lower pressure constraints on the G-WSS are accurate. The new experimental results demonstrating that the lower-pressure G-WSS is significantly lower than unanimously accepted estimates will help us to better understand the storage conditions, evolution, and potential for eruption in mid- to upper-crustal silicic magmatic systems. (1) Tuttle, O.; Bowen, N. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8–KAlSi3O8–SiO2–H2O; Geological Society of America Memoirs; Geological Society of America, 1958; Vol. 74. https://doi.org/10.1130/MEM74. (2) Rubin, A. E.; Cooper, K. M.; Till, C. B.; Kent, A. J. R.; Costa, F.; Bose, M.; Gravley, D.; Deering, C.; Cole, J. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science 2017, 356 (6343), 1154–1156. https://doi.org/10.1126/science.aam8720. (3) Andersen, N. L.; Jicha, B. R.; Singer, B. S.; Hildreth, W. Incremental Heating of Bishop Tuff Sanidine Reveals Preeruptive Radiogenic Ar and Rapid Remobilization from Cold Storage. Proceedings of the National Academy of Sciences 2017, 114 (47), 12407–12412. https://doi.org/10.1073/pnas.1709581114. (4) Ackerson, M. R.; Mysen, B. O.; Tailby, N. D.; Watson, E. B. Low-Temperature Crystallization of Granites and the Implications for Crustal Magmatism. Nature 2018, 559 (7712), 94–97. https://doi.org/10.1038/s41586-018-0264-2. (5) Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Lindgren, K. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology 2020, 175 (4). https://doi.org/10.1007/s00410-020-01677-1. 
    more » « less