skip to main content


Title: Mapping supply of and demand for ecosystem services to assess environmental justice in New York City
Livability, resilience, and justice in cities are challenged by climate change and the historical legacies that together create disproportionate impacts on human communities. Urban green infrastructure has emerged as an important tool for climate change adaptation and resilience given their capacity to provide ecosystem services such as local temperature regulation, stormwater mitigation, and air purification. However, realizing the benefits of ecosystem services for climate adaptation depend on where they are locally supplied. Few studies have examined the potential spatial mismatches in supply and demand of urban ecosystem services, and even fewer have examined supply–demand mismatches as a potential environmental justice issue, such as when supply–demand mismatches disproportionately overlap with certain socio-demographic groups. We spatially analyzed demand for ecosystem services relevant for climate change adaptation and combined results with recent analysis of the supply of ecosystem services in New York City (NYC). By quantifying the relative mismatch between supply and demand of ecosystem services across the city we were able to identify spatial hot- and coldspots of supply–demand mismatch. Hotspots are spatial clusters of census blocks with a higher mismatch and coldspots are clusters with lower mismatch values than their surrounding blocks. The distribution of mismatch hot- and coldspots was then compared to the spatial distribution of socio-demographic groups. Results reveal distributional environmental injustice of access to the climate-regulating benefits of ecosystem services provided by urban green infrastructure in NYC. Analyses show that areas with lower supply–demand mismatch tend to be populated by a larger proportion of white residents with higher median incomes, and areas with high mismatch values have lower incomes and a higher proportion of people of color. We suggest that urban policy and planning should ensure that investments in “nature-based” solutions such as through urban green infrastructure for climate change adaptation do not reinforce or exacerbate potentially existing environmental injustices.  more » « less
Award ID(s):
1934933 1444755
PAR ID:
10283040
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Ecological Applications
Volume:
0
Issue:
0
ISSN:
1051-0761
Page Range / eLocation ID:
e02390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Maximizing the functional performance of urban green infrastructure is important to deliver critical ecosystem services that support human well-being. However, urban ecosystems are impacted by social and ecological filters that affect biodiversity, shaping how species’ traits are functionally expressed, thus affecting ecosystem services supply. Our Social–Ecological Traits Framework addresses the impacts of socio-ecological systems on the phenotypic expression of traits and ecosystem services delivery. This functional approach to examining the supply of ecosystem services can improve the incorporation of biodiversity knowledge in urban planning decisions for maximizing the effectiveness of ecosystem services as nature-based solutions under multiple types of social and environmental change. 
    more » « less
  2. null (Ed.)
    Green infrastructure (GI) has become a panacea for cities working to enhance sustainability and resilience. While the rationale for GI primarily focuses on its multifunctionality (e.g. delivering multiple ecosystem services to local communities), uncertainties remain around how, for whom, and to what extent GI delivers these services. Additionally, many scholars increasingly recognize potential disservices of GI, including gentrification associated with new GI developments. Building on a novel dataset of 119 planning documents from 19 U.S. cities, we utilize insights from literature on justice in urban planning to examine the justice implications of criteria used in the siting of GI projects. We analyze the GI siting criteria described in city plans and how they explicitly or implicitly engage environmental justice. We find that justice is rarely explicitly discussed, yet the dominant technical siting criteria that focus on stormwater and economic considerations have justice implications. We conclude with recommendations for centering justice in GI spatial planning. 
    more » « less
  3. Nonprofits provide a range of human and social services in the United States, producing what some call the delegated welfare state. The authors aim to quantify inequities in nonprofit service provision by focusing on two types of vulnerabilities: spatial and socio-demographic. Specifically, the authors develop a service accessibility index to identify mismatch between population demand and locational supply of nonprofits. The authors apply the index to an original data set of more than 1,500 immigrant-serving legal and health organization in California, Nevada, and Arizona. The authors find that immigrants living in rural areas are underserved, especially in access to justice, compared with those in metropolitan areas but that residents of smaller cities have better access, especially to health services, than those in larger cities. The service accessibility index not only brings such inequities into relief but raises critical questions about the determinants and consequences of service-access variability, for vulnerable immigrants and others dependent on the nonprofit safety net. 
    more » « less
  4. Abstract

    New York City (NYC) faces many challenges in the coming decades due to climate change and its interactions with social vulnerabilities and uneven urban development patterns and processes. This New York City Panel on Climate Change (NPCC) report contributes to the Panel's mandate to advise the city on climate change and provide timely climate risk information that can inform flexible and equitable adaptation pathways that enhance resilience to climate change. This report presents up‐to‐date scientific information as well as updated sea level rise projections of record. We also present a new methodology related to climate extremes and describe new methods for developing the next generation of climate projections for the New York metropolitan region. Future work by the Panel should compare the temperature and precipitation projections presented in this report with a subset of models to determine the potential impact and relevance of the “hot model” problem. NPCC4 expects to establish new projections‐of‐record for precipitation and temperature in 2024 based on this comparison and additional analysis. Nevertheless, the temperature and precipitation projections presented in this report may be useful for NYC stakeholders in the interim as they rely on the newest generation of global climate models.

     
    more » « less
  5. Abstract

    Cooling energy demand is sensitive to urban form and socioeconomic characteristics of cities. Climate change will impact how these characteristics influence cooling demand. We use random forest machine learning methods to analyze the sensitivity of cooling demand in Chicago, IL, to weather, vegetation, building type, socioeconomic, and control variables by dividing census tracts of the city into four groups: below-Q1 income–hot days; above-Q1 income–hot days; below-Q1 income–regular days; and above-Q1 income–regular days. Below-Q1 census tracts experienced an increase in cooling demand on hot days while above-Q1 census tracts did not see an increase in demand. Weather (i.e. heat index and wind speed) and control variables (i.e. month of year, holidays and weekends) unsurprisingly had the most influence on cooling demand. Among the variables of interest, vegetation was associated with reduced cooling demand for below-Q1 income on hot days and increased cooling demand for below-Q1 income on regular days. In above-Q1 income census tracts building type was the most closely associated non-weather or control variable with cooling demand. The sensitivity of cooling demand for below-Q1 income census tracts to vegetation on hot days suggests vegetation could become more important for keeping cities cool for low-income populations as global temperatures increase. This result further highlights the importance of considering environmental justice in urban design.

     
    more » « less