skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Internal structure of the Paleoarchean Mt Edgar dome, Pilbara Craton, Western Australia
The Paleoarchean East Pilbara Terrane of Western Australia is a dome-and-keel terrane that is often highlighted as recording a vertically convective tectonic regime in the early Earth. In this model, termed ’partial convective overturn’, granitic domes diapirically rose through a dense, foundering mafic supracrustal sequence. The applicability of partial convective overturn to the East Pilbara Terrane and to other Archean dome-and-keel terranes is widely debated and has significant implications for early Earth geodynamics. A critical data gap in the East Pilbara Terrane is the internal structure of the granitic domes. We present field-based, microstructural, and anisotropy of magnetic susceptibility (AMS) data collected within the Mt Edgar dome to understand its internal structure and assess its compatibility with existing dome formation models. Field and microstructural observations suggest that most fabric development occurred under submagmatic and high-temperature solid- state conditions. The AMS results reveal a coherent, dome-wide structural pattern: 1) Sub-vertical lineations plunge radially inward towards the center of the dome and foliations across much of the dome consistently strike northwest; 2) Shallowly plunging lineations define an arch that extends from the center of the dome to the southwest margin; and 3) Migmatitic gneisses, which represent the oldest granitic component of the dome, are folded and flattened against the margin of the dome in two distinct lobes. The structural relationships between rocks of different ages indicate that units of different crystallization ages deformed synchronously during the last major pulse of granitic magmatism. These data are broadly consistent with a vertical tectonics model, and we synthesize our structural results to propose a three-stage diapiric evolution of the Mt Edgar dome. The critical stage of dome development was between 3.3 and 3.2 Ga, when widespread, melt-assisted flow of the deep crust led to the formation of a steep-walled, composite dome. These data suggest that diapiric processes were important for the formation of dome-and-keel terranes in the Paleoarchean.  more » « less
Award ID(s):
2020057
PAR ID:
10283078
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Precambrian research
Volume:
358
ISSN:
0301-9268
Page Range / eLocation ID:
106163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Paleoarchean Mt Edgar dome in the East Pilbara Terrane has long been studied as an archetypal dome within Archean dome‐and‐keel terranes, but the history of its formation is debated. Kinematic data presented in this study provide new insights into the late‐stage development of the Mt Edgar dome and East Pilbara Terrane. Quartz crystallographic preferred orientation (CPO), optical microstructures, and field structures all indicate that the granite‐greenstone contact of the Mt Edgar dome experienced reverse (greenstone‐up, dome‐down) sense of shear after the formation of the dominant schistosity. This reverse sense of shear is observed at localities along the entire extent of the sheared margin that rings most of the Mt Edgar dome, but is best documented along the southwest margin in the Warrawoona Greenstone Belt. Additionally, quartz CPO data from a dome triple junction outside of the sheared margin dominantly indicate a constrictional strain geometry, consistent with the previous interpretation that this area represents a zone of vertical foundering in a buoyancy‐instability driven system. However, buoyancy‐instability models do not necessarily predict the occurrence of greenstone‐up sense of shear preserved in solid‐state fabrics along the dome margin. Several geologic explanations are considered, including dome expansion or post‐doming deformation. The data are most consistent with explanations that directly relate to dome formation, especially when considered in tandem with recently published structural data from within the Mt Edgar dome. These kinematic data suggest that late dome development occurred in a near‐static crustal environment rather than an extensional or contractional setting.

     
    more » « less
  2. Abstract

    The Pamir gneiss domes represent the most extensive exposure of mid to lower crustal rocks in the Himalayan‐Tibetan orogen north of the India‐Asia suture zone. Unlike other domes in the Central and Southern Pamir, the Muztaghata dome stands out due to its higher metamorphic grade, more complex structural elements, and variable timing of metamorphism. In order to unravel the P‐T‐t history of the Muztaghata dome and better constrain the timing of peak metamorphism, we applied petrologic modeling in concert with geochronology to samples from the structure. The Muztaghata gneiss dome is composed of a structurally higher metapelite‐dominated terrane in the west and a structurally lower orthogneiss terrane in the east. Our results from the western terrane indicate high‐pressure eclogite facies peak conditions of ~800°C/22 kbar at ~25–20 Ma. Zircon grains from metapelitic samples from the western terrane also yield Early Jurassic metamorphic U‐Pb ages with REE signals that indicate coeval garnet growth. Our results from the eastern terrane record high‐pressure amphibolite facies peak conditions of ~650°C/14 kbar at ~24–20 Ma, noticeably lower than the structurally higher western terrane indicating structural juxtaposition during Miocene exhumation. Peak metamorphic conditions from the eastern terrane indicate depths below the current Moho, supporting the interpretation that the Early Miocene Pamir crust was thicker than present. This was followed by rapid exhumation from depths of ~75–80 km and partial westward collapse of the Pamir after 20 Ma, possibly driven in part by regional lithospheric delamination.

     
    more » « less
  3. Abstract Differing interpretations of geophysical and geologic data have led to debate regarding continent-scale plate configuration, subduction polarity, and timing of collisional events on the western North American plate margin in pre–mid-Cretaceous time. One set of models involves collision and accretion of far-traveled “exotic” terranes against the continental margin along a west-dipping subduction zone, whereas a second set of models involves long-lived, east-dipping subduction under the continental margin and a fringing or “endemic” origin for many Mesozoic terranes on the western North American plate margin. Here, we present new detrital zircon U-Pb ages from clastic rocks of the Rattlesnake Creek and Western Klamath terranes in the Klamath Mountains of northern California and southern Oregon that provide a test of these contrasting models. Our data show that portions of the Rattlesnake Creek terrane cover sequence (Salt Creek assemblage) are no older than ca. 170–161 Ma (Middle–early Late Jurassic) and contain 62–83% Precambrian detrital zircon grains. Turbidite sandstone samples of the Galice Formation are no older than ca. 158–153 Ma (middle Late Jurassic) and contain 15–55% Precambrian detrital zircon grains. Based on a comparison of our data to published magmatic and detrital ages representing provenance scenarios predicted by the exotic and endemic models (a crucial geologic test), we show that our samples were likely sourced from the previously accreted, older terranes of the Klamath Mountains and Sierra Nevada, as well as active-arc sources, with some degree of contribution from recycled sources in the continental interior. Our observations are inconsistent with paleogeographic reconstructions that are based on exotic, intra-oceanic arcs formed far offshore of North America. In contrast, the incorporation of recycled detritus from older terranes of the Klamath Mountains and Sierra Nevada, as well as North America, into the Rattlesnake Creek and Western Klamath terranes prior to Late Jurassic deformation adds substantial support to endemic models. Our results suggest that during long-lived, east-dipping subduction, the opening and subsequent closing of the marginal Galice/Josephine basin occurred as a result of in situ extension and subsequent contraction. Our results show that tectonic models invoking exotic, intra-oceanic archipelagos composed of Cordilleran arc terranes fail a crucial geologic test of the terranes’ proposed exotic origin and support the occurrence of east-dipping, pre–mid-Cretaceous subduction beneath the North American continental margin. 
    more » « less
  4. This six-student project focused on the geology of the Chugach and Prince William terranes in northern Prince William Sound, Alaska. The Chugach-Prince William (CPW) composite terrane is a Mesozoic- Tertiary accretionary complex that is well exposed for ~2200 km in southern Alaska and is inferred to be one of the thickest accretionary complexes in the world (Plafker et al., 1994; Cowan, 2003). The CPW terrane is bounded to the north by the Border Ranges fault, which shows abundant evidence of Tertiary dextral strike slip faulting, and inboard terranes of the Wrangellia composite terrane (Peninsular, Wrangellia, Alexander) (Pavlis, 1982; Cowan, 2003; Roeske et al., 2003). Throughout much of the 2200 km long belt of the CPW terrane it is bounded by the offshore modern accretionary complex of the Alaskan margin, but east of Prince William Sound the Yakutat block is colliding into the CPW and this young collision has significantly affected uplift and exhumation of inboard rocks. 
    more » « less
  5. Abstract

    The Klamath Mountains in northern California and southern Oregon are thought to record 200+ m.y. of subduction and terrane accretion, whereas the outboard Franciscan Complex records ocean‐continent subduction along the North American margin. Unraveling the Klamath Mountains' Late Jurassic history could help constrain this transition in subduction style. Key is the Mesozoic Condrey Mountain Schist (CMS), comprising, in part, a subduction complex that occupies a structural window through older, overlying central Klamath thrust sheets but with otherwise uncertain relationships to more outboard Klamath or Franciscan terranes. The CMS consists of two units (upper and lower), which could be correlated with (a) other Klamath terranes, (b) the Franciscan, or (c) neither based on regional structures and limited extant age data. Upper CMS protolith and metamorphic dates overlap with other Klamath terranes, but the lower CMS remains enigmatic. We used multiple geochronometers to constrain the timing of lower CMS deposition and metamorphism. Maximum depositional ages (MDAs) derived from detrital zircon geochronology of metasedimentary rocks are 153–135 Ma. Metamorphic ages from white mica K‐Ar and Rb‐Sr multi‐mineral isochrons from intercalated and coherently deformed metamafic lenses are 133–116 Ma. Lower CMS MDAs (<153 Ma) predominantly postdate other Klamath terrane ages, but subduction metamorphism appears to start before the earliest coherent Franciscan underplating (ca. 123 Ma). The lower CMS thus occupies a spatial and temporal position between the Klamath Mountains and Franciscan and preserves a non‐retrogressed record of the Franciscan Complex's early history (>123 Ma), otherwise only partially preserved in retrogressed Franciscan high grade blocks.

     
    more » « less