The Upper Jurassic Galice Formation, a metasedimentary unit in the Western Klamath Mountains, formed within an intra-arc basin prior to and during the Nevadan orogeny. New detrital zircon U-Pb age analyses (N = 11; n = 2792) yield maximum depositional ages (MDA) ranging from ca. 160 Ma to 151 Ma, which span Oxfordian to Kimmeridgian time and overlap Nevadan contractional deformation that began by ca. 157 Ma. Zircon ages indicate a significant North American continental provenance component that is consistent with tectonic models placing the Western Klamath terrane on the continental margin in Late Jurassic time. Hf isotopic analysis of Mesozoic detrital zircon (n = 603) from Galice samples reveals wide-ranging εHf values for Jurassic and Triassic grains, many of which cannot be explained by a proximal source in the Klamath Mountains, thus indicating a complex provenance. New U-Pb ages and Hf data from Jurassic plutons within the Klamath Mountains match some of the Galice Formation detrital zircon, but these data cannot account for the most non-radiogenic Jurassic detrital grains. In fact, the in situ Cordilleran arc record does not provide a clear match for the wide-ranging isotopic signature of Triassic and Jurassic grains. When compiled, Galice samples indicate sources in the Sierra Nevada pre-batholithic framework and retroarc region, older Klamath terranes, and possibly overlap strata from the Blue Mountains and the Insular superterrane. Detrital zircon age spectra from strata of the Upper Jurassic Great Valley Group and Mariposa Formation contain similar age modes, which suggests shared sediment sources. Inferred Galice provenance within the Klamath Mountains and more distal sources suggest that the Galice basin received siliciclastic turbidites fed by rivers that traversed the Klamath-Sierran arc from headwaters in the retroarc region. Thus, the Galice Formation contains a record of active Jurassic magmatism in the continental arc, with significant detrital input from continental sediment sources within and east of the active arc. These westward-flowing river systems remained active throughout the shift in Cordilleran arc tectonics from a transtensional system to the Nevadan contractional system, which is characterized by sediment sourced in uplifts within and east of the arc and the thrusting of older Galice sediments beneath older Klamath terranes to the east.
more »
« less
A crucial geologic test of Late Jurassic exotic collision versus endemic re-accretion in the Klamath Mountains Province, western United States, with implications for the assembly of western North America
Abstract Differing interpretations of geophysical and geologic data have led to debate regarding continent-scale plate configuration, subduction polarity, and timing of collisional events on the western North American plate margin in pre–mid-Cretaceous time. One set of models involves collision and accretion of far-traveled “exotic” terranes against the continental margin along a west-dipping subduction zone, whereas a second set of models involves long-lived, east-dipping subduction under the continental margin and a fringing or “endemic” origin for many Mesozoic terranes on the western North American plate margin. Here, we present new detrital zircon U-Pb ages from clastic rocks of the Rattlesnake Creek and Western Klamath terranes in the Klamath Mountains of northern California and southern Oregon that provide a test of these contrasting models. Our data show that portions of the Rattlesnake Creek terrane cover sequence (Salt Creek assemblage) are no older than ca. 170–161 Ma (Middle–early Late Jurassic) and contain 62–83% Precambrian detrital zircon grains. Turbidite sandstone samples of the Galice Formation are no older than ca. 158–153 Ma (middle Late Jurassic) and contain 15–55% Precambrian detrital zircon grains. Based on a comparison of our data to published magmatic and detrital ages representing provenance scenarios predicted by the exotic and endemic models (a crucial geologic test), we show that our samples were likely sourced from the previously accreted, older terranes of the Klamath Mountains and Sierra Nevada, as well as active-arc sources, with some degree of contribution from recycled sources in the continental interior. Our observations are inconsistent with paleogeographic reconstructions that are based on exotic, intra-oceanic arcs formed far offshore of North America. In contrast, the incorporation of recycled detritus from older terranes of the Klamath Mountains and Sierra Nevada, as well as North America, into the Rattlesnake Creek and Western Klamath terranes prior to Late Jurassic deformation adds substantial support to endemic models. Our results suggest that during long-lived, east-dipping subduction, the opening and subsequent closing of the marginal Galice/Josephine basin occurred as a result of in situ extension and subsequent contraction. Our results show that tectonic models invoking exotic, intra-oceanic archipelagos composed of Cordilleran arc terranes fail a crucial geologic test of the terranes’ proposed exotic origin and support the occurrence of east-dipping, pre–mid-Cretaceous subduction beneath the North American continental margin.
more »
« less
- PAR ID:
- 10335530
- Date Published:
- Journal Name:
- GSA Bulletin
- Volume:
- 134
- Issue:
- 3-4
- ISSN:
- 0016-7606
- Page Range / eLocation ID:
- 965 to 988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)The Klamath Mountains Province of Northern California and southern Oregon, USA, consists of generally east-dipping terranes assembled via Paleozoic to Mesozoic subduction along the western margin of North America. The Klamath Mountains Province more than doubled in mass from Middle Jurassic to Early Cretaceous time, due to alternating episodes of extension (e.g., rifting and formation of the Josephine ophiolite) and shortening (e.g., Siskiyou and Nevadan events). However, the tectonic mechanisms driving this profound Mesozoic growth of the Klamath Mountains Province are poorly understood. In this paper, we show that formation of the Condrey Mountain schist (CMS) of the central Klamath Mountains Province spanned this critical time period and use the archive contained within the CMS as a key to deciphering the Mesozoic tectonics of the Klamath Mountains Province. Igneous samples from the outer CMS subunit yield U-Pb zircon ages of ca. 175–170 Ma, which reflect volcanic protolith eruptive timing. One detrital sample from the same subunit contains abundant (~54% of zircon grains analyzed) Middle Jurassic ages with Paleozoic and Proterozoic grains comprising the remainder and yields a maximum depositional age (MDA) of ca. 170 Ma. These ages, in the context of lithologic and thermochronologic relations, suggest that outer CMS protoliths accumulated in an outboard rift basin and subsequently underthrust the Klamath Mountains Province during the Late Jurassic Nevadan orogeny. Five samples of the chiefly metasedimentary inner CMS yield MDAs ranging from 160 Ma to 130 Ma, with younger ages corresponding to deeper structural levels. Such inverted age zonation is common in subduction complexes and, considering existing K-Ar ages, suggests that the inner CMS was assembled by progressive underplating over a >10 m.y. timespan. Despite this age zonation, age spectra derived from structurally shallow and deep portions of the inner CMS closely overlap those derived from the oldest section of the Franciscan subduction complex (South Fork Mountain schist). These relations suggest that the inner CMS is a composite of South Fork Mountain schist slices that were sequentially underplated beneath the Klamath Mountains Province. The age, inboard position, and structural position (i.e., the CMS resides directly beneath Jurassic arc assemblages with no intervening mantle) of the CMS suggest that these rocks were emplaced during one or more previously unrecognized episodes of shallow-angle subduction restricted to the Klamath Mountains Province. Furthermore, emplacement of the deepest portions of the CMS corresponds with the ca. 136 Ma termination of magmatism in the Klamath Mountains Province, which we relate to the disruption of asthenospheric flow during slab shallowing. The timing of shallow-angle subduction shortly precedes that of the westward translation of the Klamath Mountains Province relative to correlative rocks in the northern Sierra Nevada Range, which suggests that subduction dynamics were responsible for relocating the Klamath Mountains Province from the arc to the forearc. In aggregate, the above relations require at least three distinct phases of extension and/or rifting, each followed by an episode of shallow-angle underthrusting. The dynamic upper-plate deformation envisioned here is best interpreted in the context of tectonic switching, whereby slab steepening and trench retreat alternate with slab shallowing due to recurrent subduction of buoyant oceanic features.more » « less
-
Booth, A.M. (Ed.)The Klamath Mountains province and adjacent Franciscan subduction complex (northern California–southern Oregon) together contain a world-class archive of subduction-related growth and stabilization of continental lithosphere. These key elements of the North American Cordillera expanded significantly from Middle Jurassic to Early Cretaceous time, apparently by a combination of tectonic accretion and continental arc– plus rift-related magmatic additions. The purpose of this field trip is twofold: to showcase the rock record of continental growth in this region and to discuss unresolved regional geologic problems. The latter include: (1) the extent to which Mesozoic orogenesis (e.g., Siskiyou and Nevadan events plus the onset of Franciscan accretion) was driven by collision of continental or oceanic fragments versus changes in plate motion, (2) whether growth involved “accordion tectonics” whereby marginal basins (and associated fringing arcs) repeatedly opened and closed or was driven by the accretion of significant volumes of material exotic to North America, and (3) the origin of the Condrey Mountain schist, a composite low-grade unit occupying an enigmatic structural window in the central Klamaths—at odds with the east-dipping thrust sheet regional structural “rule.” Respectively, we assert that (1) if collision drove orogenesis, the requisite exotic materials are missing (we cannot rule out the possibility that such materials were removed via subduction and/or strike slip faulting); (2) opening and closure of the Josephine ophiolite-floored and Galice Formation–filled basin demonstrably occurred adjacent to North America; and (3) the inner Condrey Mountain schist domain is equivalent to the oldest clastic Franciscan subunit (the South Fork Mountain schist) and therefore represents trench assemblages underplated >100 km inboard of the subduction margin, presumably during a previously unrecognized phase of shallow-angle subduction. In aggregate, these relations suggest that the Klamath Mountains and adjacent Franciscan complex represent telescoped arc and forearc upper plate domains of a dynamic Mesozoic subduction zone, wherein the downgoing oceanic plate took a variety of trajectories into the mantle. We speculate that the downgoing plate contained alternating tracts of smooth and dense versus rough and buoyant lithosphere—the former gliding into the mantle (facilitating slab rollback and upper plate extension) and the latter enhancing basal traction (driving upper plate compression and slab-shallowing). Modern snapshots of similarly complex convergent settings are abundant in the western Pacific Ocean, with subduction of the Australian plate beneath New Guinea and adjacent island groups providing perhaps the best analog.more » « less
-
Gordon, Stacia M; Miller, Robert B; Rusmore, Margi E; Tikoff, Basil (Ed.)ABSTRACT Details of the Late Jurassic tectonic evolution of the North American continental margin remain controversial, but a clear understanding of Late Jurassic tectonics is essential for understanding subsequent terrane accretion and displacement. Upper Jurassic strata of the Galice Formation in the western Klamath Mountains province and the Mariposa Formation in the Western Sierra Nevada metamorphic province were deposited along the margin of North America during this critical time. The Galice and Mariposa Formations have long been correlated, and these strata are the youngest rocks deformed during Late Jurassic Nevadan deformation in Oregon and California. Published and new detrital zircon age and εHf data sets from the Galice Formation (N = 30; n-age = 7287; n-Hf = 876) and Mariposa Formation (N = 13; n-age = 3656; n-Hf = 484) confirm previous correlations between Galice and Mariposa strata and require that abundant continentally derived zircon reached both basins with the onset of turbidite deposition ca. 159 Ma. However, subtle differences between the pre-Mesozoic age distributions and Mesozoic zircon εHf values compiled for each basin reveal nuances in provenance that can be directly related to the location of each basin relative to sediment sources within the magmatic arc and retroarc region. Mixture modeling indicates that the relative latitudinal position of the Galice and Mariposa basins with respect to their source regions can account for the differences in source contributions to each basin, and our results indicate <200 km of post-Jurassic dextral displacement within the Sierra Nevada magmatic arc. These geochemical and age-based provenance results, combined with depositional age constraints for each basin, are most consistent with models for the Late Jurassic Nevadan orogeny that call on changing plate kinematics during eastward subduction that resulted in periods of transtension and transpression along the margin, rather than westward subduction of the North American plate beneath an island archipelago or double subduction of the Mezcalero plate.more » « less
-
null (Ed.)Abstract Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology data documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon uranium-lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid- to Late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the Late Jurassic to Early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustal reactivation of the Valdez Creek shear zone, the Late Cretaceous plate boundary that initially brought them together. 40Ar/39Ar mica ages reveal independent post-collisional thermal histories of hanging wall and footwall rocks until reactivation localized on the Valdez Creek fault after ca. 32 Ma. Slip on the Valdez Creek fault expanded into a thrust system that progressed southward to the Broxson Gulch fault at the southern margin of the suture zone and eventually into the Wrangellia terrane. Detrital zircon U-Pb age spectra and clast assemblages from fault-bounded Cenozoic gravel deposits indicate that the thrust system was active during the Oligocene and into the Pliocene, likely as a far-field result of ongoing flat-slab subduction and accretion of the Yakutat microplate. The Valdez Creek fault was the primary reactivated structure in the suture zone, likely due to its linkage with the reactivated boundary zone between the Wrangellia composite terrane and North America in the lithospheric mantle.more » « less
An official website of the United States government

