The lymphatics transport material from peripheral tissues to lymph nodes, where immune responses are formed, before being transported into systemic circulation. With key roles in transport and fluid homeostasis, lymphatic dysregulation is linked to diseases, including lymphedema. Fluid within the interstitium passes into initial lymphatic vessels where a valve system prevents fluid backflow. Additionally, lymphatic endothelial cells produce key chemokines, such as CCL21, that direct the migration of dendritic cells and lymphocytes. As a result, lymphatics are an attractive delivery route for transporting immune modulatory treatments to lymph nodes where immunotherapies are potentiated in addition to being an alternative method of reaching systemic circulation. In this review, we discuss the physiology of lymphatic vessels and mechanisms used in the transport of materials from peripheral tissues to lymph nodes. We then summarize nanomaterial-based strategies to take advantage of lymphatic transport functions for delivering therapeutics to lymph nodes or systemic circulation. We also describe opportunities for targeting lymphatic endothelial cells to modulate transport and immune functions.
more »
« less
Fluid pumping of peristaltic vessel fitted with elastic valves
Using numerical simulations, we probe the fluid flow in an axisymmetric peristaltic vessel fitted with elastic bi-leaflet valves. In this biomimetic system that mimics the flow generated in lymphatic vessels, we investigate the effects of the valve and vessel properties on pumping performance of the valved peristaltic vessel. The results indicate that valves significantly increase pumping by reducing backflow. The presence of valves, however, increases the viscous resistance, therefore requiring greater work compared to valveless vessels. The benefit of the valves is the most significant when the fluid is pumped against an adverse pressure gradient and for low vessel contraction wave speeds. We identify the optimum vessel and valve parameters leading to the maximum pumping efficiency. We show that the optimum valve elasticity maximizes the pumping flow rate by allowing the valve to block the backflow more effectively while maintaining low resistance during the forward flow. We also examine the pumping in vessels where the vessel contraction amplitude is a function of the adverse pressure gradient, as found in lymphatic vessels. We find that, in this case, the flow is limited by the work generated by the contracting vessel, suggesting that the pumping in lymphatic vessels is constrained by the performance of the lymphatic muscle. Given the regional heterogeneity of valve morphology observed throughout the lymphatic vasculature, these results provide insight into how these variations might facilitate efficient lymphatic transport in the vessel's local physiologic context.
more »
« less
- Award ID(s):
- 1635133
- PAR ID:
- 10283099
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 918
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Liebau pump is a tubular, non-peristaltic, pulsatile pump capable of creating unidirectional flow in the absence of valves. It requires asymmetrical positioning of the pincher relative to the attachment sites of its elastic segment to the rest of the circuit. Biological feasibility of such valveless pumps remains a hotly debated topic. To test the feasibility of the Liebau-based pumping in vessels with biologically relevant properties we quantified the output of Liebau pumps with their compliant segments made of a silicone rubber that mimicked the Young modulus of soft tissues. The lengths, the inner diameters, thicknesses of the tested compliant segments ranged from 1 to 5 cm, 3 to 8 mm and 0.3 to 1 mm, respectively. The compliant segment of the setup was compressed at 0.5–2.5 Hz frequencies using a 3.5-mm-wide rectangular piston. A nearest-neighbor tracking algorithm was used to track movements of 0.5-mm carbon particles within the system. The viscosity of the aqueous solution was varied by increased percentage of glycerin. Measurements yielded quantitative relationships between viscosity, frequency of compression and the net flowrate. The use of the Liebau principle of valveless pumping in conjunction with physiologically sized vessel and contraction frequencies yields flowrates comparable to peristaltic pumps of the same dimensions. We conclude that the data confirm physiological feasibility of Liebau-based pumping and warrant further testing of its mechanism using excised biological conduits or tissue engineered components. Such biomimetic pumps can serve as energy-efficient flow generators in microdevices or to study the function of embryonic heart during its normal development or in diseased states.more » « less
-
Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell–cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.more » « less
-
A FLIP device gives cross-sectional area along the length of the esophagus and one pressure measurement, both as a function of time. Deducing mechanical properties of the esophagus including wall material properties, contraction strength, and wall relaxation from these data are a challenging inverse problem. Knowing mechanical properties can change how clinical decisions are made because of its potential for in-vivo mechanistic insights. To obtain such information, we conducted a parametric study to identify peristaltic regimes by using a 1D model of peristaltic flow through an elastic tube closed on both ends and also applied it to interpret clinical data. The results gave insightful information about the effect of tube stiffness, fluid/bolus density and contraction strength on the resulting esophagus shape through quantitive representations of the peristaltic regimes. Our analysis also revealed the mechanics of the opening of the contraction area as a function of bolus flow resistance. Lastly, we concluded that peristaltic driven flow displays three modes of peristaltic geometries, but all physiologically relevant flows fall into two peristaltic regimes characterized by a tight contraction.more » « less
-
Abstract Balloon dilation catheters are often used to quantify the physiological state of peristaltic activity in tubular organs and comment on their ability to propel fluid which is important for healthy human function. To fully understand this system's behavior, we analyzed the effect of a solitary peristaltic wave on a fluid-filled elastic tube with closed ends. A reduced order model that predicts the resulting tube wall deformations, flow velocities, and pressure variations is presented. This simplified model is compared with detailed fluid–structure three-dimensional (3D) immersed boundary (IB) simulations of peristaltic pumping in tube walls made of hyperelastic material. The major dynamics observed in the 3D simulations were also displayed by our one-dimensional (1D) model under laminar flow conditions. Using the 1D model, several pumping regimes were investigated and presented in the form of a regime map that summarizes the system's response for a range of physiological conditions. Finally, the amount of work done during a peristaltic event in this configuration was defined and quantified. The variation of elastic energy and work done during pumping was found to have a unique signature for each regime. An extension of the 1D model is applied to enhance patient data collected by the device and find the work done for a typical esophageal peristaltic wave. This detailed characterization of the system's behavior aids in better interpreting the clinical data obtained from dilation catheters. Additionally, the pumping capacity of the esophagus can be quantified for comparative studies between disease groups.more » « less