skip to main content

Title: A diffuse domain method for two-phase flows with large density ratio in complex geometries
We present a quasi-incompressible Navier–Stokes–Cahn–Hilliard (q-NSCH) diffuse interface model for two-phase fluid flows with variable physical properties that maintains thermodynamic consistency. Then, we couple the diffuse domain method with this two-phase fluid model – yielding a new q-NSCH-DD model – to simulate the two-phase flows with moving contact lines in complex geometries. The original complex domain is extended to a larger regular domain, usually a cuboid, and the complex domain boundary is replaced by an interfacial region with finite thickness. A phase-field function is introduced to approximate the characteristic function of the original domain of interest. The original fluid model, q-NSCH, is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the solid surface. We show that the q-NSCH-DD system converges to the q-NSCH system asymptotically as the thickness of the diffuse domain interface introduced by the phase-field function shrinks to zero ( $\epsilon \rightarrow 0$ ) with $\mathcal {O}(\epsilon )$ . Our analytic results are confirmed numerically by measuring the errors in both $L^{2}$ and $L^{\infty }$ norms. In addition, we show that the q-NSCH-DD system not only allows the contact line to move on curved boundaries, but also makes the fluid–fluid interface more » intersect the solid object at an angle that is consistent with the prescribed contact angle. « less
Authors:
; ; ; ;
Award ID(s):
2012634 1719960 1763272
Publication Date:
NSF-PAR ID:
10283127
Journal Name:
Journal of Fluid Mechanics
Volume:
907
ISSN:
0022-1120
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  2. Abstract

    Shock waves from underwater and air explosions are significant threats to surface and underwater vehicles and structures. Recent studies on the mechanical and thermal properties of various phase-separated elastomers indicate the possibility of applying these materials as a coating to mitigate shock-induced structural failures. To demonstrate this approach and investigate its efficacy, this paper presents a fluid-structure coupled computational model capable of predicting the dynamic response of air-backed bilayer (i.e. elastomer coating – metal substrate) structures submerged in water to hydrostatic and underwater explosion loads. The model couples a three-dimensional multiphase finite volume computational fluid dynamics model with a nonlinear finite element computational solid dynamics model using the FIVER (FInite Volume method with Exact multi-material Riemann solvers) method. The kinematic boundary condition at the fluid-structure interface is enforced using an embedded boundary method that is capable of handling large structural deformation and topological changes. The dynamic interface condition is enforced by formulating and solving local, one-dimensional fluid-solid Riemann problems, which is well-suited for transferring shock and impulsive loads. The capability of this computational model is demonstrated through a numerical investigation of hydrostatic and shock-induced collapse of aluminum tubes with polyurea coating on its inner surface. The thickness of themore »structure is resolved explicitly by the finite element mesh. The nonlinear material behavior of polyurea is accounted for using a hyper-viscoelastic constitutive model featuring a modified Mooney-Rivlin equation and a stress relaxation function in the form of prony series. Three numerical experiments are conducted to simulate and compare the collapse of the structure in different loading conditions, including a constant pressure, a fluid environment initially in hydrostatic equilibrium, and a two-phase fluid flow created by a near-field underwater explosion.

    « less
  3. In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly.
  4. Interactions between an evolving solid and inviscid flow can result insubstantial computational complexity, particularly in circumstances involving varied boundary conditions between the solid and fluid phases. Examples of such interactions include melting, sublimation, and deflagration, all of which exhibit bidirectional coupling, mass/heat transfer, and topological change of the solid-fluid interface. The diffuse interface method is a powerful technique that has been used to describe a wide range of solid-phase interface-driven phenomena. The implicit treatment of the interface eliminates the need for cumbersome interface tracking, and advances in adaptive mesh refinement have provided a way to sufficiently resolve diffuse interfaces without excessive computational cost. However, the general scale-invariant coupling of these techniques to flow solvers has been relatively unexplored. In this work, a robust method is presented for treating diffuse solid-fluid interfaces with arbitrary boundary conditions. Source terms defined over the diffuse region mimic boundary conditions at the solid-fluid interface, and it is demonstrated that the diffuse length scale has no adverse effects. To show the efficacy of the method, a one-dimensional implementation is introduced and tested for three types of boundaries: mass flux through the boundary, a moving boundary, and passive interaction of the boundary with an incident acoustic wave.more »These demonstrate expected behavior in all cases. Convergence analysis is also performed and compared against the sharp-interface solution, and linear convergence is observed. This method lays the groundwork for the extension to viscous flow, and the solution of problems involving time-varying mass-flux boundaries.« less
  5. A coupled phase-field and hydrodynamic model is introduced to describe a two-phase, weakly compressible smectic (layered phase) in contact with an isotropic fluid of different density. A non-conserved smectic order parameter is coupled to a conserved mass density in order to accommodate non-solenoidal flows near the smectic–isotropic boundary arising from density contrast between the two phases. The model aims to describe morphological transitions in smectic thin films under heat treatment, in which arrays of focal conic defects evolve into conical pyramids and concentric rings through curvature dependent evaporation of smectic layers. The model leads to an extended thermodynamic relation at a curved surface that includes its Gaussian curvature, non-classical stresses at the boundary and flows arising from density gradients. The temporal evolution given by the model conserves the overall mass of the liquid crystal while still allowing for the modulated smectic structure to grow or shrink. A numerical solution of the governing equations reveals that pyramidal domains are sculpted at the center of focal conics upon a temperature increase, which display tangential flows at their surface. Other cases investigated include the possible coalescence of two cylindrical stacks of smectic layers, formation of droplets, and the interactions between focal conic domainsmore »through flow.« less