skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system
In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility H − 1 H^{-1} gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, n n and p p , is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of 0 0 prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the ℓ ∞ \ell ^\infty bound for n n and p p ), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme.  more » « less
Award ID(s):
2012634 1759536 1950868
PAR ID:
10283139
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Mathematics of Computation
Volume:
90
Issue:
331
ISSN:
0025-5718
Page Range / eLocation ID:
2071 to 2106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, is approximated in a semi-implicit manner. In the spatial discretization, the marker and cell difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis. 
    more » « less
  2. A class of nonlinear Fokker–Planck equations with nonlocal interactions may include many important cases, such as porous medium equations with external potentials and aggregation–diffusion models. The trajectory equation of the Fokker–Plank equation can be derived based on an energetic variational approach. A structure‐preserving numerical scheme that is mass conservative, energy stable, uniquely solvable, and positivity preserving at a theoretical level has also been designed in the previous work. Moreover, the numerical scheme is shown to satisfy the discrete energetic dissipation law and preserve steady states and has been observed to be second order accurate in space and first‐order accurate time in various numerical experiments. In this work, we give the rigorous convergence analysis for the highly nonlinear numerical scheme. A careful higher order asymptotic expansion is needed to handle the highly nonlinear nature of the trajectory equation. In addition, two step error estimates (a rough estimate and a refined estimate) are necessary in the convergence proof. Different from a standard error estimate, the rough estimate is performed to control the nonlinear term. A few numerical results are also presented to verify the optimal convergence order and the preservation of equilibria. 
    more » « less
  3. null (Ed.)
    In this paper, we study the central discontinuous Galerkin (DG) method on overlapping meshes for second order wave equations. We consider the first order hyperbolic system, which is equivalent to the second order scalar equation, and construct the corresponding central DG scheme. We then provide the stability analysis and the optimal error estimates for the proposed central DG scheme for one- and multi-dimensional cases with piecewise P k elements. The optimal error estimates are valid for uniform Cartesian meshes and polynomials of arbitrary degree k  ≥ 0. In particular, we adopt the techniques in Liu et al . ( SIAM J. Numer. Anal. 56 (2018) 520–541; ESAIM: M2AN 54 (2020) 705–726) and obtain the local projection that is crucial in deriving the optimal order of convergence. The construction of the projection here is more challenging since the unknowns are highly coupled in the proposed scheme. Dispersion analysis is performed on the proposed scheme for one dimensional problems, indicating that the numerical solution with P 1 elements reaches its minimum with a suitable parameter in the dissipation term. Several numerical examples including accuracy tests and long time simulation are presented to validate the theoretical results. 
    more » « less
  4. In this paper, we provide a detailed theoretical analysis of the numerical scheme introduced in [C. Liu, C. Wang, and Y. Wang, J. Comput. Phys., 436:110253, 2021] for the reaction kinetics of a class of chemical reaction networks that satisfies detailed balance condition. In contrast to conventional numerical approximations, which are typically constructed based on ordinary differential equations (ODEs) for the concentrations of all involved species, the scheme is developed using the equations of reaction trajectories, which can be viewed as a generalized gradient flow of a physically relevant free energy. The unique solvability, positivity-preserving, and energy-stable properties are proved for the general case involving multiple reactions, under a mild condition on the stoichiometric matrix. 
    more » « less
  5. Abstract We propose a new fully‐discretized finite difference scheme for a quantum diffusion equation, in both one and two dimensions. This is the first fully‐discretized scheme with proven positivity‐preserving and energy stable properties using only standard finite difference discretization. The difficulty in proving the positivity‐preserving property lies in the lack of a maximum principle for fourth order partial differential equations. To overcome this difficulty, we reformulate the scheme as an optimization problem based on a variational structure and use the singular nature of the energy functional near the boundary values to exclude the possibility of non‐positive solutions. The scheme is also shown to be mass conservative and consistent. 
    more » « less