skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergence analysis of a positivity-preserving numerical scheme for the Cahn-Hilliard-Stokes system with Flory-Huggins energy potential
A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, is approximated in a semi-implicit manner. In the spatial discretization, the marker and cell difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis.  more » « less
Award ID(s):
2309547
PAR ID:
10558616
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Mathematics of Computation
Volume:
93
Issue:
349
ISSN:
0025-5718
Page Range / eLocation ID:
2185 to 2214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility H − 1 H^{-1} gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, n n and p p , is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of 0 0 prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the ℓ ∞ \ell ^\infty bound for n n and p p ), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme. 
    more » « less
  2. null (Ed.)
    We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme. 
    more » « less
  3. Abstract A transformed primal-dual (TPD) flow is developed for a class of nonlinear smooth saddle point system. The flow for the dual variable contains a Schur complement which is strongly convex. Exponential stability of the saddle point is obtained by showing the strong Lyapunov property. Several TPD iterations are derived by implicit Euler, explicit Euler, implicit-explicit and Gauss-Seidel methods with accelerated overrelaxation of the TPD flow. Generalized to the symmetric TPD iterations, linear convergence rate is preserved for convex-concave saddle point systems under assumptions that the regularized functions are strongly convex. The effectiveness of augmented Lagrangian methods can be explained as a regularization of the non-strongly convexity and a preconditioning for the Schur complement. The algorithm and convergence analysis depends crucially on appropriate inner products of the spaces for the primal variable and dual variable. A clear convergence analysis with nonlinear inexact inner solvers is also developed. 
    more » « less
  4. The rigid body attitude estimation problem is treated using the discrete-time Lagrange-d'Alembert principle. Three different possibilities are considered for the multi-rate relation between angular velocity measurements and direction vector measurements for attitude: 1) integer relation between sampling rates, 2) time-varying sampling rates, 3) non-integer relation between sampling rates. In all cases, it is assumed that angular velocity measurements are sampled at a higher rate compared to the inertial vectors. The attitude determination problem from two or more vector measurements in the body-fixed frame is formulated as Wahba's problem. At instants when direction vector measurements are absent, a discrete-time model for attitude kinematics is used to propagate past measurements. A discrete-time Lagrangian is constructed as the difference between a kinetic energy-like term that is quadratic in the angular velocity estimation error and an artificial potential energy-like term obtained from Wahba's cost function. An additional dissipation term is introduced and the discrete-time Lagrange-d'Alembert principle is applied to the Lagrangian with this dissipation to obtain an optimal filtering scheme. A discrete-time Lyapunov analysis is carried out to show that the optimal filtering scheme is asymptotically stable in the absence of measurement noise and the domain of convergence is almost global. For a realistic evaluation of the scheme, numerical experiments are conducted with inputs corrupted by bounded measurement noise. These numerical simulations exhibit convergence of the estimated states to a bounded neighborhood of the actual states. 
    more » « less
  5. In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers. 
    more » « less