In this paper, we provide a theoretical analysis for a preconditioned steepest descent (PSD) iterative solver that improves the computational time of a finite difference numerical scheme for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a convex splitting approach is applied to the chemical potential such that the logarithmic and the surface diffusion terms are treated implicitly while the expansive concave term is treated with an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes the numerical implementation very challenging. However, the positivity-preserving property for the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have been established in a recent work and it has been shown that successful solvers ensure a similar positivity-preserving property at each iteration stage. Therefore, in this work, we will show that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD solver consists of first computing a search direction (which requires solving a constant-coefficient Poisson-like equation) and then takes a one-parameter optimization step over the search direction in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD iteration solver and a geometric convergence rate is proved for the iteration. In particular, the strict separation property of the numerical solution, which indicates a uniform distance between the numerical solution and the singular limit values of ±1 for the phase variable, plays an essential role in the iteration convergence analysis. A few numerical results are presented to demonstrate the robustness and efficiency of the PSD solver.
more »
« less
Convergence analysis of a positivity-preserving numerical scheme for the Cahn-Hilliard-Stokes system with Flory-Huggins energy potential
A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, is approximated in a semi-implicit manner. In the spatial discretization, the marker and cell difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis.
more »
« less
- Award ID(s):
- 2309547
- PAR ID:
- 10558616
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Mathematics of Computation
- Volume:
- 93
- Issue:
- 349
- ISSN:
- 0025-5718
- Page Range / eLocation ID:
- 2185 to 2214
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility H − 1 H^{-1} gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, n n and p p , is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of 0 0 prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the ℓ ∞ \ell ^\infty bound for n n and p p ), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme.more » « less
-
null (Ed.)We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.more » « less
-
Abstract A transformed primal-dual (TPD) flow is developed for a class of nonlinear smooth saddle point system. The flow for the dual variable contains a Schur complement which is strongly convex. Exponential stability of the saddle point is obtained by showing the strong Lyapunov property. Several TPD iterations are derived by implicit Euler, explicit Euler, implicit-explicit and Gauss-Seidel methods with accelerated overrelaxation of the TPD flow. Generalized to the symmetric TPD iterations, linear convergence rate is preserved for convex-concave saddle point systems under assumptions that the regularized functions are strongly convex. The effectiveness of augmented Lagrangian methods can be explained as a regularization of the non-strongly convexity and a preconditioning for the Schur complement. The algorithm and convergence analysis depends crucially on appropriate inner products of the spaces for the primal variable and dual variable. A clear convergence analysis with nonlinear inexact inner solvers is also developed.more » « less
-
Abstract We study the stability and convergence properties of a semi-implicit time stepping scheme for the incompressible Navier–Stokes equations with variable density and viscosity. The density is assumed to be approximated in a way that conserves the minimum-maximum principle. The scheme uses a fractional time-stepping method and the momentum, which is equal to the product of the density and velocity, as a primary unknown. The semi-implicit algorithm for the coupled momentum-pressure is shown to be conditionally stable and the velocity is shown to converge inL2norm with order one in time. Numerical illustrations confirm that the algorithm is stable and convergent under classic CFL condition even for sharp density profiles.more » « less
An official website of the United States government

