- Editors:
- Atomi, Haruyuki
- Award ID(s):
- 1817819
- Publication Date:
- NSF-PAR ID:
- 10283166
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 86
- Issue:
- 21
- ISSN:
- 0099-2240
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cell cultures are effective supplemental models to study specific biochemical pathways used for environmental adaption in animals. They enable isolation from system influence and facilitate control the extracellular environment. For work focusing on fish species many representative cell lines now exist, including a tilapia brain cell line (OmB) developed in our lab. CRISPR/Cas9 gene editing is an additional tool aiding these studies by allowing manipulation of specific genetic loci and evaluating their causal relationship between phenotypes of interest. However, established CRISPR/Cas9 gene targeting tools and methods often have not functioned as efficiently in fish cells as seen in other animal cell models such as mammalian cell lines, consistent with our initial attempts to apply CRISPR/Cas9 in OmB cells that failed to indicate genomic alteration at the targeted sites. Poor expression of heterologous promoters in OmB cells was hypothesized to be a primary cause for this occurrence so we constructed a custom plasmid vector based system utilizing tilapia endogenous promoters (EF1 alpha to express Cas9 and a U6 to express gRNAs). This system demonstrated substantial editing of most target sites attempted with mutational efficiency as high 80%. This work specifically highlighted the importance of phylogenetic proximity in selection of a polymerasemore »
-
ABSTRACT Gene-editing tools such as CRISPR-Cas9 have created unprecedented opportunities for genetic studies in plants and animals. We designed a course-based undergraduate research experience (CURE) to train introductory biology students in the concepts and implementation of gene-editing technology as well as develop their soft skills in data management and scientific communication. We present two versions of the course that can be implemented with twice-weekly meetings over a 5-week period. In the remote-learning version, students performed homology searches, designed guide RNAs (gRNAs) and primers, and learned the principles of molecular cloning. This version is appropriate when access to laboratory equipment or in-person instruction is limited, such as during closures that have occurred in response to the COVID-19 pandemic. In person, students designed gRNAs, cloned CRISPR-Cas9 constructs, and performed genetic transformation of Arabidopsis thaliana . Students learned how to design effective gRNA pairs targeting their assigned gene with an 86% success rate. Final exams tested students’ ability to apply knowledge of an unfamiliar genome database to characterize gene structure and to properly design gRNAs. Average final exam scores of ∼73% and ∼84% for in-person and remote-learning CUREs, respectively, indicated that students met learning outcomes. The highly parallel nature of the CURE makesmore »
-
ABSTRACT Anti-CRISPR (Acr) loci/operons encode Acr proteins and Acr-associated (Aca) proteins. Forty-five Acr families have been experimentally characterized inhibiting seven subtypes of CRISPR-Cas systems. We have developed a bioinformatics pipeline to identify genomic loci containing Acr homologs and/or Aca homologs by combining three computational approaches: homology, guilt-by-association, and self-targeting spacers. Homology search found thousands of Acr homologs in bacterial and viral genomes, but most are homologous to AcrIIA7 and AcrIIA9. Investigating the gene neighborhood of these Acr homologs revealed that only a small percentage (23.0% in bacteria and 8.2% in viruses) of them have neighboring Aca homologs and thus form Acr-Aca operons. Surprisingly, although a self-targeting spacer is a strong indicator of the presence of Acr genes in a genome, a large percentage of Acr-Aca loci are found in bacterial genomes without self-targeting spacers or even without complete CRISPR-Cas systems. Additionally, for Acr homologs from genomes with self-targeting spacers, homology-based Acr family assignments do not always agree with the self-targeting CRISPR-Cas subtypes. Last, by investigating Acr genomic loci coexisting with self-targeting spacers in the same genomes, five known subtypes (I-C, I-E, I-F, II-A, and II-C) and five new subtypes (I-B, III-A, III-B, IV-A, and V-U4) of Acrs were inferred. Basedmore »
-
Abstract CRISPR/Cas9 gene editing is effective in manipulating genetic loci in mammalian cell cultures and whole fish but efficient platforms applicable to fish cell lines are currently limited. Our initial attempts to employ this technology in fish cell lines using heterologous promoters or a ribonucleoprotein approach failed to indicate genomic alteration at targeted sites in a tilapia brain cell line (OmB). For potential use in a DNA vector approach, endogenous tilapia beta Actin (OmBAct), EF1 alpha (OmEF1a), and U6 (TU6) promoters were isolated. The strongest candidate promoter determined by EGFP reporter assay, OmEF1a, was used to drive constitutive Cas9 expression in a modified OmB cell line (Cas9-OmB1). Cas9-OmB1 cell transfection with vectors expressing gRNAs driven by the TU6 promoter achieved mutational efficiencies as high as 81% following hygromycin selection. Mutations were not detected using human and zebrafish U6 promoters demonstrating the phylogenetic proximity of U6 promoters as critical when used for gRNA expression. Sequence alteration to TU6 improved mutation rate and cloning efficiency. In conclusion, we report new tools for ectopic expression and a highly efficient, economical system for manipulation of genomic loci and evaluation of their causal relationship with adaptive cellular phenotypes by CRISPR/Cas9 gene editing in fish cells.
-
Babitzke, Paul (Ed.)ABSTRACT Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsRmore »