skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Integrating Aquatic Metabolism and Net Ecosystem CO2 Balance in Short- and Long-Hydroperiod Subtropical Freshwater Wetlands
Abstract How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO 2 exchange (NEE) and ecosystem respiration ( R eco ) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature ( T water ), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO 2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m −2  day −1 and aquatic respiration ( R Aq ) from 0 to 6.13 g C m −2  day −1 . Nonlinear interactions between water level, T water , and GAPP and R Aq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.  more » « less
Award ID(s):
2025954 1237517 1832229 1561161
PAR ID:
10283239
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Ecosystems
ISSN:
1432-9840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2derived from eddy covariance (EC) for aSpartina alterniflorasalt marsh. We found interannual NEE could vary up to 3‐fold and range from −58.5 ± 11.3 to −222.9 ± 12.4 g C m−2 year−1in 2016 and 2020, respectively. Further, we found that atmospheric CO2fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2‐fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity. 
    more » « less
  2. Abstract Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change. 
    more » « less
  3. Abstract Ponds, wetlands, and shallow lakes (collectively “shallow waterbodies”) are among the most biogeochemically active freshwater ecosystems. Measurements of gross primary production (GPP), respiration (R), and net ecosystem production (NEP) are rare in shallow waterbodies compared to larger and deeper lakes, which can bias our understanding of lentic ecosystem processes. In this study, we calculated GPP, R, and NEP in 26 small, shallow waterbodies across temperate North America and Europe. We observed high rates of GPP (mean 8.4 g O2 m−3 d−1) and R (mean −9.1 g O2 m−3 d−1), while NEP varied from net heterotrophic to autotrophic. Metabolism rates were affected by depth and aquatic vegetation cover, and the shallowest waterbodies had the highest GPP, R, and the most variable NEP. The shallow waterbodies from this study had considerably higher metabolism rates compared to deeper lakes, stressing the importance of these systems as highly productive biogeochemical hotspots. 
    more » « less
  4. Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value. 
    more » « less
  5. Net ecosystem carbon balance is a comprehensive assessment of ecosystem function that can test restoration effectiveness. Coastal peatlands are globally important carbon sinks that are vulnerable to carbon loss with saltwater intrusion. It is uncertain how wetland carbon stocks and fluxes change during freshwater restoration following exposure to saltwater and elevated nutrients. We restored freshwater to sawgrass (Cladium jamaicense) peat monoliths from freshwater marshes of the Everglades (Florida, U.S.A.) that had previously been exposed to elevated salinity (approximately9 ppt) and phosphorus (P) loading (1 g P m−2year−1) in wetland mesocosms. We quantified changes in water and soil physicochemistry, plant and soil carbon and nutrient standing stocks, and net ecosystem productivity during restoration. Added freshwater immediately reduced porewater salinity from >8 to approximately 2 ppt, but elevated porewater dissolved organic carbon persisted. Above‐ and belowground biomass, leaf P concentrations, and instantaneous rates of gross ecosystem productivity (GEP) and ecosystem respiration (ER) remained elevated from prior added P. Modeled monthly GEP and ER were higher in marshes with saltwater and P legacies, resulting in negative net ecosystem productivities that were up to 12× lower than controls. Leaf litter breakdown rates and litter P concentrations were 2× higher in marshes with legacies of added saltwater and P. Legacies of saltwater and P on carbon loss persisted despite freshwater restoration, but recovery was greatest for freshwater marshes exposed to saltwater alone. Our results suggest that restoration in nutrient‐limited freshwater wetlands exposed to saltwater intrusion and nutrient enrichment is a slow process. 
    more » « less