skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing for and Identifying Plural Goals in a Science Museum Game Exhibit
Science museums are often interactive spaces where a variety of visitors engage with exhibits in diverse ways. While trying to support participants? behavior in ways that make intuitive sense for these behaviors in a museum context, these exhibits need to support interests and participation in forms that are meaningfully diverse - to make domains accessible to learners belonging to groups minoritized in those domains. In this paper, we present an interactive computational thinking exhibit designed to foster a multiplicity of goals and participatory behaviors. We also present preliminary analysis on how we can use play data to delineate the pursuit of different goals mediated through different pursuits. We also find care to be a uniquely valuable aesthetic motivator in gameplay, often overlooked in common design frameworks - with potential to expand perspectives on computing and combat inequity among computing learners.  more » « less
Award ID(s):
1713439
PAR ID:
10283670
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CHI PLAY '20: Extended Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in Play
Page Range / eLocation ID:
292 to 296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artistic computing learning environments have been of central importance in the exploration of how to support equity and inclusion in computing. Explorations within e-textiles, music, and interactive media, for example, have created diverse opportunities for learning how to program while creating culturally relevant artifacts. However, there is a gap in our understanding of the design processes of learners in these constructionist environments, including how the computational artifacts and their components impact the learning processes and the ways they build meaning and agency with computing. We advocate for research to attend more closely to the materiality of the computational materials to understand how they impact the social and cultural dimensions in which students are learning. In this paper, we present an analysis of 6 high school learners’ experiences within a co-designed arts and computing curriculum. Our analyses highlight how the materiality of the components impacted the ways in which learners developed personal and epistemological connections to computing based on how it enabled them to connect to their interests, represent their ideas, engage with their community, and overcome or navigate around challenges to get to their final designs. We demonstrate how centralizing the materiality in the design of computational construction kits can inform how we support agency and engagement with computing. 
    more » « less
  2. Many biologists are interested in teaching computing skills or using computing in the classroom, despite not being formally trained in these skills themselves. Thus biologists may find themselves researching how to teach these skills, and therefore many individuals are individually attempting to discover resources and methods to do so. Recent years have seen an expansion of new technologies to assist in delivering course content interactively. Educational research provides insights into how learners absorb and process information during interactive learning. In this review, we discuss the value of teaching foundational computing skills to biologists, and strategies and tools to do so. Additionally, we review the literature on teaching practices to support the development of these skills. We pay special attention to meeting the needs of diverse learners, and consider how different ways of delivering course content can be leveraged to provide a more inclusive classroom experience. Our goal is to enable biologists to teach computational skills and use computing in the classroom successfully. 
    more » « less
  3. The Next Generation Science Standards and the National Research Council recognize systems thinking as an essential skill to address the global challenges of the 21st century. But the habits of mind needed to understand complex systems are not readily learned through traditional approaches. Recently large-scale interactive multi-user immersive simulations are being used to expose the learners to diverse topics that emulate real-world complex systems phenomena. These modern-day mixed reality simulations are unique in that the learners are an integral part of the evolving dynamics. The decisions they make and the actions that follow, collectively impact the simulated complex system, much like any real-world complex system. But the learners have difficulty understanding these coupled complex systems processes, and often get “lost” or “stuck,” and need help navigating the problem space. Formative feedback is the traditional way educators support learners during problem solving. Traditional goal-based and learner-centered approaches don’t scale well to environments that allow learners to explore multiple goals or solutions, and multiple solution paths (Mallavarapu & Lyons, 2020). In this work, we reconceptualize formative feedback for complex systems-based learning environments, formative fugues, (a term derived from music by Reitman, 1964) to allow learners to make informed decisions about their own exploration paths. We discuss a novel computational approach that employs causal inference and pattern matching to characterize the exploration paths of prior learners and generate situationally relevant formative feedback. We extract formative fugues from the data collected from an ecological complex systems simulation installed at a museum. The extracted feedback does not presume the goals of the learners, but helps the learners understand what choices and events led to the current state of the problem space, and what paths forward are possible. We conclude with a discussion of implications of using formative fugues for complex systems education. 
    more » « less
  4. We present a multimodal physics simulation, including visual and auditory (description, sound effects, and sonification) modalities to support the diverse needs of learners. We describe design challenges and solutions, and findings from final simulation evaluations with learners with and without visual impairments. We also share insights from completing research with members of diverse learner groups (N = 52). This work presents approaches for designing and evaluating accessible interactive simulations for learners with diverse needs. 
    more » « less
  5. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Open-ended learning environments (OELEs) involve high learner agency in defining learning goals and multiple pathways to achieve those goals. These tasks involve learners transitioning through self-regulated learning (SRL) phases by actively setting goals, applying different strategies for those goals, and monitoring performance to update their strategies. However, because of the flexibility, how learners react to impasses and errors has a critical influence on their learning. An intelligent pedagogical agent (IPA) continuously modeling learner activities could help support learners in these environments. However, this continuous comprehension of behaviors and strategies is difficult in OELEs with evolving goals, ill-defined problem structures, and learning sequences. In this paper, we draw from the literature on SRL phases and cognitive states to investigate the utility of two different methods, Sequence Mapping, and Hidden Markov Models, in building learner activity models from log data collected from a summer camp with 14 middle school girls in an open-design environment. We evaluate the effectiveness of these models separately, and combined, in identifying 7 states: Forethought, Engaged Concentration, Acting, Monitoring, Wheel Spinning, Mind Wandering, and Reflect and Repair. Lastly, we recommend dialogue intervention strategies for an IPA to support learning in OELEs. 
    more » « less