skip to main content


Title: Comparing security and privacy attitudes between iOS and Android users in the U.S.
Many studies of mobile security and privacy are, for simplicity, limited to either only Android users or only iOS users. However, it is not clear whether there are systematic differences in the privacy and security knowledge or preferences of users who select these two platforms. Understanding these differences could provide important context about the generalizability of research results. This paper reports on a survey (n=493) with a demographically diverse sample of U.S. Android and iOS users. We compare users of these platforms using validated privacy and security scales (IUIPC-8 and SA-6) as well as previously deployed attitudinal and knowledge questions from Pew Research Center. As a secondary analysis, we also investigate potential differences among users of different smart-speaker platforms, including Amazon Echo and Google Home. We find no significant differences in privacy attitudes of different platform users, but we do find that Android users have more technology knowledge than iOS users. In addition, we find evidence (via comparison with Pew data) that Prolific participants have more technology knowledge than the general U.S. population.  more » « less
Award ID(s):
1955805
NSF-PAR ID:
10283684
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SOUPS 2021: USENIX Symposium on Usable Privacy and Security
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart mobile devices have become an integral part of people's life and users often input sensitive information on these devices. However, various side channel attacks against mobile devices pose a plethora of serious threats against user security and privacy. To mitigate these attacks, we present a novel secure Back-of-Device (BoD) input system, SecTap, for mobile devices. To use SecTap, a user tilts her mobile device to move a cursor on the keyboard and tap the back of the device to secretly input data. We design a tap detection method by processing the stream of accelerometer readings to identify the user's taps in real time. The orientation sensor of the mobile device is used to control the direction and the speed of cursor movement. We also propose an obfuscation technique to randomly and effectively accelerate the cursor movement. This technique not only preserves the input performance but also keeps the adversary from inferring the tapped keys. Extensive empirical experiments were conducted on different smart phones to demonstrate the usability and security on both Android and iOS platforms. 
    more » « less
  2. Abstract: Health data is considered to be sensitive and personal; both governments and software platforms have enacted specific measures to protect it. Consumer apps that collect health data are becoming more popular, but raise new privacy concerns as they collect unnecessary data, share it with third parties, and track users. However, developers of these apps are not necessarily knowingly endangering users’ privacy; some may simply face challenges working with health features. To scope these challenges, we qualitatively analyzed 269 privacy-related posts on Stack Overflow by developers of health apps for Android- and iOS-based systems. We found that health-specific access control structures (e.g., enhanced requirements for permissions and authentication) underlie several privacy-related challenges developers face. The specific nature of problems often differed between the platforms, for example additional verification steps for Android developers, or confusing feedback about incorrectly formulated permission scopes for iOS. Developers also face problems introduced by third-party libraries. Official documentation plays a key part in understanding privacy requirements, but in some cases, may itself cause confusion. We discuss implications of our findings and propose ways to improve developers’ experience of working with health-related features -- and consequently to improve the privacy of their apps’ end users. 
    more » « less
  3. Privacy and security researchers often rely on data collected through online crowdsourcing platforms such as Amazon Mechanical Turk (MTurk) and Prolific. Prior work---which used data collected in the United States between 2013 and 2017---found that MTurk responses regarding security and privacy were generally representative for people under 50 or with some college education. However, the landscape of online crowdsourcing has changed significantly over the last five years, with the rise of Prolific as a major platform and the increasing presence of bots. This work attempts to replicate the prior results about the external validity of online privacy and security surveys. We conduct an online survey on MTurk (n=800), a gender-balanced survey on Prolific (n=800), and a representative survey on Prolific (n=800) and compare the responses to a probabilistic survey conducted by the Pew Research Center (n=4272). We find that MTurk response quality has degraded over the last five years, and our results do not replicate the earlier finding about the generalizability of MTurk responses. By contrast, we find that data collected through Prolific is generally representative for questions about user perceptions and experiences, but not for questions about security and privacy knowledge. We also evaluate the impact of Prolific settings, attention check questions, and statistical methods on the external validity of online surveys, and we develop recommendations about best practices for conducting online privacy and security surveys. 
    more » « less
  4. null (Ed.)
    Mobile devices encroach on almost every part of our lives, including work and leisure, and contain a wealth of personal and sensitive information. It is, therefore, imperative that these devices uphold high security standards. A key aspect is the security of the underlying operating system. In particular, Android plays a critical role due to being the most dominant platform in the mobile ecosystem with more than one billion active devices and due to its openness, which allows vendors to adopt and customize it. Similar to other platforms, Android maintains security by providing monthly security patches and announcing them via the Android security bulletin. To absorb this information successfully across the Android ecosystem, impeccable coordination by many different vendors is required. In this paper, we perform a comprehensive study of 3,171 Android-related vulnerabilities and study to which degree they are reflected in the Android security bulletin, as well as in the security bulletins of three leading vendors: Samsung, LG, and Huawei. In our analysis, we focus on the metadata of these security bulletins (e.g., timing, affected layers, severity, and CWE data) to better understand the similarities and differences among vendors. We find that (i) the studied vendors in the Android ecosystem have adopted different structures for vulnerability reporting, (ii) vendors are less likely to react with delay for CVEs with Android Git repository references, (iii) vendors handle Qualcomm-related CVEs different from the rest of external layer CVEs. 
    more » « less
  5. Permission-based access control enables users to manage and control their sensitive data for third-party applications. In an ideal scenario, third-party application includes enough details to illustrate the usage of such data, while the reality is that many descriptions of third-party applications are vague about their security or privacy activities. As a result, users are left with insufficient details when granting sensitive data to these applications. Prior works, such as WHYPER and AutoCog, have addressed the aforementioned problem via a so-called permission correlation system. Such a system correlates third-party applications' description with their requested permissions and determines an application as overprivileged if a mismatch is found. However, although prior works are successful on their own platforms, such as Android eco-system, they are not directly applicable to new platforms, such as Chrome extensions and IFTTT, without extensive data labeling and parameter tuning. In this paper, we design, implement, and evaluate a novel system, called TKPERM, which transfers knowledges of permission correlation systems across platforms. Our key idea is that these varied platforms with different use cases---like smartphones, IoTs, and desktop browsers---are all user-facing and thus allow the knowledges to be transferrable across platforms. Particularly, we adopt a greedy selection algorithm that picks the best source domains to transfer to the target permission on a new platform. TKPERM achieves 90.02% overall F1 score after transfer, which is 12.62% higher than the one of a model trained directly on the target domain without transfer. Particularly, TKPERM has 91.83% F1 score on IFTTT, 89.13% F1 score on Chrome-Extension, and 89.1% F1 score on SmartThings. TKPERM also successfully identified many real-world overprivileged applications, such as a gaming hub requesting location permissions without legitimate use. 
    more » « less