skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal Control over Two‐ and Three‐State Living Coordinative Chain Transfer Polymerization for Modulating the Molecular Weight Distribution Profile of Polyolefins
Abstract A highly versatile new strategy for manipulating the molecular weight profiles, including breadth, asymmetry (skewness) and modal nature (mono‐, bi‐, and multimodal), of a variety of different polyolefins is reported. It involves temporal control over two‐ and three‐state living coordinative chain transfer polymerization (LCCTP) of olefins in a programmable way. By changing the identity of the R′ groups of the chain transfer agent, ER′n, with time, different populations of chains within a bi‐ or multimodal polyolefin product can be selectively tagged with different end‐groups. By changing the nature of the main‐group metal of the CTA, programmed manipulation of the relative magnitudes of the dispersities of the different maxima that make up the final MWD profile can be achieved. This strategy can be implemented with existing LCCTP materials and conventional reactor methods to provide access to scalable and practical quantities of an unlimited array of new polyolefin materials.  more » « less
Award ID(s):
1955730
PAR ID:
10283728
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
36
ISSN:
1433-7851
Page Range / eLocation ID:
p. 19671-19678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herein, we report a selective photooxidation of commodity postconsumer polyolefins to produce polymers with in‐chain ketones. The reaction does not involve the use of catalyst, metals, or expensive oxidants, and selectively introduces ketone functional groups. Under mild and operationally simple conditions, yields up to 1.23 mol % of in‐chain ketones were achieved. Installation of in‐chain ketones resulted in materials with improved adhesion of the materials and miscibility of mixed plastics relative to the unfunctionalized plastics. The introduction of ketone groups into the polymer backbone allows these materials to react with diamines, forming dynamic covalent polyolefin networks. This strategy allows for the upcycling of mixed plastic waste into reprocessable materials with enhanced performance properties compared to polyolefin blends. Mechanistic studies support the involvement of photoexcited nitroaromatics in consecutive hydrogen and oxygen atom transfer reactions. 
    more » « less
  2. Abstract This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors. 
    more » « less
  3. Abstract Despite their industrial ubiquity, polyolefin‐polyacrylate block copolymers are challenging to synthesize due to the distinct polymerization pathways necessary for respective blocks. This study utilizes MILRad, metal–organic insertion light‐initiated radical polymerization, to synthesize polyolefin‐b‐poly(methyl acrylate) copolymer by combining palladium‐catalyzed insertion–coordination polymerization and atom transfer radical polymerization (ATRP). Brookhart‐type Pd complexes used for the living polymerization of olefins are homolytically cleaved by blue‐light irradiation, generating polyolefin‐based macroradicals, which are trapped with functional nitroxide derivatives forming ATRP macroinitiators. ATRP in the presence of Cu(0), that is, supplemental activators and reducing agents , is used to polymerize methyl acrylate. An increase in the functionalization efficiency of up to 71% is demonstrated in this study by modifying the light source and optimizing the radical trapping condition. Regardless of the radical trapping efficiency, essentially quantitative chain extension of polyolefin‐Br macroinitiator with acrylates is consistently demonstrated, indicating successful second block formation. 
    more » « less
  4. Abstract Higher order topological insulators (HOTIs) are a new class of topological materials which host protected states at the corners or hinges of a crystal. HOTIs provide an intriguing alternative platform for helical and chiral edge states and Majorana modes, but there are very few known materials in this class. Recent studies have proposed Bi as a potential HOTI, however, its topological classification is not yet well accepted. In this work, we show that the (110) facets of Bi and BiSb alloys can be used to unequivocally establish the topology of these systems. Bi and Bi0.92Sb0.08(110) films were grown on silicon substrates using molecular beam epitaxy and studied by scanning tunneling spectroscopy. The surfaces manifest rectangular islands which show localized hinge states on three out of the four edges, consistent with the theory for the HOTI phase. This establishes Bi and Bi0.92Sb0.08as HOTIs, and raises questions about the topological classification of the full family of BixSb1−xalloys. 
    more » « less
  5. Abstract The field of photovoltaics is revolutionized in recent years by the development of two–dimensional (2D) type‐II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)‐doped WS2is investigated, hereafter labeled V‐WS2, in combination with air‐stable Bi2O2Se for use in high‐performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se, and 2 at.% V‐WS2/Bi2O2Se, respectively, indicating a superior charge transfer in V‐WS2/Bi2O2Se compared to pristine WS2/Bi2O2Se. The exciton binding energies for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se and 2 at.% V‐WS2/Bi2O2Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2. These findings confirm that by incorporating V‐doped WS2, charge transfer in WS2/Bi2O2Se heterostructures can be tuned, providing a novel light‐harvesting technique for the development of the next generation of photovoltaic devices based on V‐doped transition metal dichalcogenides (TMDCs)/Bi2O2Se. 
    more » « less