skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A natural mechanism for approximate Higgs alignment in the 2HDM
A bstract The 2HDM possesses a neutral scalar interaction eigenstate whose tree-level properties coincide with the Standard Model (SM) Higgs boson. In light of the LHC Higgs data which suggests that the observed Higgs boson is SM-like, it follows that the mixing of the SM Higgs interaction eigenstate with the other neutral scalar interaction eigenstates of the 2HDM should be suppressed, corresponding to the so-called Higgs alignment limit. The exact Higgs alignment limit can arise naturally due to a global symmetry of the scalar potential. If this symmetry is softly broken, then the Higgs alignment limit becomes approximate (although still potentially consistent with the current LHC Higgs data). In this paper, we obtain the approximate Higgs alignment suggested by the LHC Higgs data as a consequence of a softly broken global symmetry of the Higgs Lagrangian. However, this can only be accomplished if the Yukawa sector of the theory is extended. We propose an extended 2HDM with vector-like top quark partners, where explicit mass terms in the top sector provide the source of the soft symmetry breaking of a generalized CP symmetry. In this way, we can realize approximate Higgs alignment without a significant fine-tuning of the model parameters. We then explore the implications of the current LHC bounds on vector-like top quark partners for the success of our proposed scenario.  more » « less
Award ID(s):
1931220
PAR ID:
10283788
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We present a novel construction for a Higgs-VEV sensitive (HVS) operator, which can be used as a trigger operator in cosmic selection models for the electroweak hierarchy problem. Our operator does not contain any degrees of freedom charged under the SM gauge symmetries, leading to reduced tuning in the resulting models. Our construction is based on the extension of a two Higgs doublet model (2HDM) with a softly broken approximate global D 8 symmetry (the symmetry group of a square). A cosmic crunching model based on our extended Higgs sector has only a percent level tuning corresponding to the usual little hierarchy problem. In large regions of parameter space the 2HDM is naturally pushed towards the alignment limit. A complete model requires the introduction of fermionic top partners to ensure the approximate D 8 symmetry in the fermion sector. We also show that the same extended Higgs sector can be used for a novel implementation of the seesaw mechanism of neutrino masses. 
    more » « less
  2. A bstract Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb − 1 . Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1 . 12±0 . 09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations. 
    more » « less
  3. In our recent paper, we have investigated the potential for the LHC to discover vector-like quark partner states singly produced via their chromomagnetic moment interactions. These production mechanisms extend traditional searches which rely on pair-production of top-quark partner states or on the single production of these states through electroweak interactions, in the sense of providing greatly increased reach in parameter space regions where traditional searches are insensitive. In this study we determine the potential of both the 14 TeV high-luminosity LHC (HL-LHC) and a 100 TeV proton-proton collider to probe new vector-like quarks produced in this mode. We focus on the single production of a top-quark partner in association with an ordinary top-quark, as well as on the resonant production of the bottom-quark partner with its subsequent decay to a top-quark partner and a W boson. For both cases we consider a top-partner decay to the Higgs boson and an ordinary top-quark. We find that HL-LHC and a future 100 TeV proton collider can probe vector-like partner masses up to about 3 TeV and 15-20 TeV respectively, visibly extending the range of the traditional vector like quark partner searches. 
    more » « less
  4. A bstract Searches for new low-mass matter and mediator particles have actively been pursued at fixed target experiments and at e + e − colliders. It is challenging at the CERN LHC, but they have been searched for in Higgs boson decays and in B meson decays by the ATLAS and CMS Collaborations, as well as in a low transverse momentum phenomena from forward scattering processes (e.g., FASER). We propose a search for a new scalar particle in association with a heavy vector-like quark. We consider the scenario in which the top quark ( t ) couples to a light scalar ϕ′ and a heavy vector-like top quark T . We examine single and pair production of T in pp collisions, resulting in a final state with a top quark that decays purely hadronically, a T which decays semileptonically ( T → W + b → ℓ ν b ), and a ϕ′ that is very boosted and decays to a pair of collimated photons which can be identified as a merged photon system. The proposed search is expected to achieve a discovery reach with signal significance greater than 5 σ (3 σ ) for m ( T ) as large as 1.8 (2) TeV and m ( ϕ′ ) as small as 1 MeV, assuming an integrated luminosity of 3000 fb − 1 . This search can expand the reach of T , and demonstrates that the LHC can probe low-mass, MeV-scale particles. 
    more » « less
  5. null (Ed.)
    A bstract A search for nonresonant production of Higgs boson pairs via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two photons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb − 1 . No significant deviation from the background-only hypothesis is observed. An upper limit at 95% confidence level is set on the product of the Higgs boson pair production cross section and branching fraction into $$ \gamma \gamma \mathrm{b}\overline{\mathrm{b}} $$ γγ b b ¯ . The observed (expected) upper limit is determined to be 0.67 (0 . 45) fb, which corresponds to 7.7 (5.2) times the standard model prediction. This search has the highest sensitivity to Higgs boson pair production to date. Assuming all other Higgs boson couplings are equal to their values in the standard model, the observed coupling modifiers of the trilinear Higgs boson self-coupling κ λ and the coupling between a pair of Higgs bosons and a pair of vector bosons c 2V are constrained within the ranges − 3 . 3 < κ λ < 8 . 5 and − 1 . 3 < c 2V < 3 . 5 at 95% confidence level. Constraints on κ λ are also set by combining this analysis with a search for single Higgs bosons decaying to two photons, produced in association with top quark-antiquark pairs, and by performing a simultaneous fit of κ λ and the top quark Yukawa coupling modifier κ t . 
    more » « less