skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Work-in-Progress: Computer Simulations to Deliver Inquiry-Based Laboratory Activities in Mechanics
Our previous work demonstrated that the use of inquiry-based laboratory activities (IBLAs) have helped students develop better understanding of core concepts in mechanics. IBLAs are constructed around brief hands-on-experiments designed so that students can confront common misconceptions. In a predict-observe-explain sequence, these activities prompt students to make sense of a phenomenon as they work collaboratively through a guided worksheet. However, these physical experiments present logistical challenges for many instructors, such as those who teach large classes or those confined to remote instruction due to the COVID 19 pandemic. In this work-in-progress paper, we describe the development of computer simulations for a set of IBLAs in mechanics. These web-based virtual IBLAs contain simulations built with an open-source JavaScript physics engine that has been customized to achieve the accuracy needed. They afford the same pedagogical structure but allow students to observe the salient phenomena on a computer screen, reducing the constraints and limitations for an instructor to deliver them. Students can rapidly adjust input parameters, render the physics engine in slow-motion speeds, and graph real-time parameters from the simulation. Free access to the IBLAs, including simulations, handouts and instructions is available to instructors through the Concept Warehouse. In this we report how we rendered a set of proven IBLAs, including the Spool IBLA, Rolling Cylinders IBLA and Pendulum IBLA into a virtual laboratory environment. We describe student responses to different renderings including video only, simulation only, and combined video and simulation.  more » « less
Award ID(s):
2135190
PAR ID:
10283839
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Following the outbreak of COVID-19, conducting lab classes emerged as a major challenge. Just switching to remote only mode with virtual experiments and simulations was very limiting for both the instructors and the students. At an historically black university, an approach that integrated the hands-on experiments enriched by simulation resources with virtual follow up was adopted. The key advantages of this approach were access to equipment, flexibility on when and how experiments are conducted, and the curiosity driven engagement fostered. Though this approach lacks the in-person one-on-one engagement and use of specialized equipment in the lab, it established a different and, in some aspect, deeper student engagement. Development of troubleshooting skills and the confidence in setting experiments are a few key observations. In this study, we present a comparison of the efficacy of such remote integrated modes of conducting Physics experiments with in-person in laboratory teaching of undergraduate students, who are enrolled in the Introduction to Physics Experiment course participated at Morgan State University. We conclude that these two approaches are complementary to one another. 
    more » « less
  2. Frank, B. W.; Jones, D. L.; and Ryan, Q. X. (Ed.)
    In this paper, we analyze video recordings of students working on tutorials in Zoom breakout rooms in an upper-division quantum mechanics course. We investigate group behaviors in this virtual environment, including the effects of instructor presence. To this end, we modify the Color Frames coding scheme introduced by Scherr to suit the virtual nature of the interactions. By broadening the frames and allowing for multiple overlapping frames, we are able to describe some group behaviors not otherwise captured. For example, in some instances, students take on an authoritative role in the group, and in other instances, groups engage in overtly casual behavior while nonetheless having on-topic discussions. We observe significant variation in how much time each group spends in each frame, but find that all groups spend some time in all frames. Instructors can be present without dominating or eliminating discussion between students, and their presence need not significantly impact the time students spent in an "informal/friendly'' frame. However, instructor presence significantly reduces time spent working individually. Our findings will support additional research into the dynamics of student discussions during tutorials and aid ongoing development of online tutorials that can, e.g., be assigned for use outside of class. 
    more » « less
  3. This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students. 
    more » « less
  4. Although there is extensive literature documenting hands-on learning experiences in engineering classrooms, there is a lack of consensus regarding how student learning during these activities compares to learning during online video demonstrations. Further, little work has been done to directly compare student learning for similarly-designed hands-on learning experiences focused on different engineering subjects. As the use of hands-on activities in engineering continues to grow and expand to non-traditional virtual applications, understanding how to optimize student learning during these activities is critical. To address this, we collected conceptual assessment data from 763 students at 15 four-year institutions. The students completed activities with one of two highly visual low-cost desktop learning modules (LCDLMs), one focused on fluid mechanics and the other on heat transfer principles, using two different implementation formats: either hands-on or video demonstration. To examine the effect of implementation format and of the learning tool used, learning gains on conceptual assessments were compared for virtual and hands-on implementations of fluid mechanics and heat transfer LCDLMs. Results showed that learning gains were positive and similar for hands-on and video demonstrations for both modules assessed, suggesting both implementation formats support an impactful student learning experience. However, a significant difference was observed in effectiveness based on the type of LCDLM used. Score increases of 31.2% and 24% were recorded on our post-activity assessment for hands-on and virtual implementations of the fluid mechanics LCDLM compared to pre-activity assessment scores, respectively, while smaller 8.2% and 9.2% increases were observed for hands-on and virtual implementations of the heat transfer LCDLM. In this paper, we consider existing literature to ascertain the reasons for similar effectiveness of hands-on and video demonstrations and for the differing effectiveness of the fluid mechanics and heat transfer LCDLMs. We discuss the practical implications of our findings with respect to designing hands-on or video demonstration activities. 
    more » « less
  5. Laboratory activities are central to undergraduate student learning in science and engineering. With advancements in computer technology, many laboratory activities have shifted from providing students experiments in a physical mode to providing them in a virtual mode. Further, physical and virtual modes can be combined to address a single topic, as the modes have complementary affordances. In this paper, we report on the design and implementation of a physical and virtual laboratory on the topic of jar testing, a common process for drinking water treatment. The assignment for each laboratory mode was designed to leverage the mode’s affordances. Correspondingly, we hypothesized each would elicit a different subset of engineering epistemic practices. In a naturalistic, qualitative study design based on laboratory mode (physical or virtual) and laboratory order (virtual first or physical first), we collected process, product, and reflection data of students’ laboratory activity. Taking an orientation that learning is participation in valued disciplinary practice, data were coded and used to characterize how students engaged with each laboratory mode. Results showed that the virtual laboratory elicited more conceptual epistemic practices and the physical laboratory more material epistemic practices, aligning with the affordances of each mode. When students completed the laboratory in the virtual mode first, students demonstrated greater engagement in epistemic practices and more positive perceptions of their learning experience in the virtual mode than when they completed the physical mode first. In contrast, engagement in the physical mode was mostly unaffected by the laboratory order. 
    more » « less