skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inference about age-standardized rates with sampling errors in the denominators
Cancer incidence and mortality are typically presented as age-standardized rates. Inference about these rates becomes complicated when denominators involve sampling errors. We propose a bias-corrected rate estimator as well as its corresponding variance estimator that take into account sampling errors in the denominators. Confidence intervals are derived based on the proposed estimators as well. Performance of the proposed methods is evaluated empirically based on simulation studies. More importantly, advantage of the proposed method is demonstrated and verified in a real-life study of cancer mortality disparity. A web-based, user-friendly computational tool is also being developed at the National Cancer Institute to accompany the new methods with the first application being calculating cancer mortality rates by US-born and foreign-born status. Finally, promise of proposed estimators to account for errors introduced by differential privacy procedures to the 2020 decennial census products is discussed.  more » « less
Award ID(s):
1934568
PAR ID:
10283851
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Statistical Methods in Medical Research
Volume:
30
Issue:
2
ISSN:
0962-2802
Page Range / eLocation ID:
535 to 548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elshall, Ahmed; Ye, Ming (Ed.)
    Bayesian model evidence (BME) is a measure of the average fit of a model to observation data given all the parameter values that the model can assume. By accounting for the trade-off between goodness-of-fit and model complexity, BME is used for model selection and model averaging purposes. For strict Bayesian computation, the theoretically unbiased Monte Carlo based numerical estimators are preferred over semi-analytical solutions. This study examines five BME numerical estimators and asks how accurate estimation of the BME is important for penalizing model complexity. The limiting cases for numerical BME estimators are the prior sampling arithmetic mean estimator (AM) and the posterior sampling harmonic mean (HM) estimator, which are straightforward to implement, yet they result in underestimation and overestimation, respectively. We also consider the path sampling methods of thermodynamic integration (TI) and steppingstone sampling (SS) that sample multiple intermediate distributions that link the prior and the posterior. Although TI and SS are theoretically unbiased estimators, they could have a bias in practice arising from numerical implementation. For example, sampling errors of some intermediate distributions can introduce bias. We propose a variant of SS, namely the multiple one-steppingstone sampling (MOSS) that is less sensitive to sampling errors. We evaluate these five estimators using a groundwater transport model selection problem. SS and MOSS give the least biased BME estimation at an efficient computational cost. If the estimated BME has a bias that covariates with the true BME, this would not be a problem because we are interested in BME ratios and not their absolute values. On the contrary, the results show that BME estimation bias can be a function of model complexity. Thus, biased BME estimation results in inaccurate penalization of more complex models, which changes the model ranking. This was less observed with SS and MOSS as with the three other methods. 
    more » « less
  2. Summary Computerised Record Linkage methods help us combine multiple data sets from different sources when a single data set with all necessary information is unavailable or when data collection on additional variables is time consuming and extremely costly. Linkage errors are inevitable in the linked data set because of the unavailability of error‐free unique identifiers. A small amount of linkage errors can lead to substantial bias and increased variability in estimating parameters of a statistical model. In this paper, we propose a unified theory for statistical analysis with linked data. Our proposed method, unlike the ones available for secondary data analysis of linked data, exploits record linkage process data as an alternative to taking a costly sample to evaluate error rates from the record linkage procedure. A jackknife method is introduced to estimate bias, covariance matrix and mean squared error of our proposed estimators. Simulation results are presented to evaluate the performance of the proposed estimators that account for linkage errors. 
    more » « less
  3. We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy’s value and the observed data distribution. We next propose minimax estimation methods for learning these bridge functions, and construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. The nonasymptotic and asymptotic properties of the proposed estimators are investigated in detail. A Python implementation of our proposal is available at https://github.com/jiaweihhuang/ Confounded-POMDP-Exp. 
    more » « less
  4. In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. (2018). Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling ratio, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. Pilot estimators are required to calculate subsampling probabilities and to correct biases in un-weighted estimators; interestingly, even if pilot estimators are inconsistent, the proposed method still produce consistent and asymptotically normal estimators. 
    more » « less
  5. null (Ed.)
    Summary We investigate optimal subsampling for quantile regression. We derive the asymptotic distribution of a general subsampling estimator and then derive two versions of optimal subsampling probabilities. One version minimizes the trace of the asymptotic variance-covariance matrix for a linearly transformed parameter estimator and the other minimizes that of the original parameter estimator. The former does not depend on the densities of the responses given covariates and is easy to implement. Algorithms based on optimal subsampling probabilities are proposed and asymptotic distributions, and the asymptotic optimality of the resulting estimators are established. Furthermore, we propose an iterative subsampling procedure based on the optimal subsampling probabilities in the linearly transformed parameter estimation which has great scalability to utilize available computational resources. In addition, this procedure yields standard errors for parameter estimators without estimating the densities of the responses given the covariates. We provide numerical examples based on both simulated and real data to illustrate the proposed method. 
    more » « less