The synthesis and coordination chemistry of a new class of silyl pincer ligand featuring pyrrole-based linkers is reported. The steric and electronic properties of these bis(phosphinopyrrole)methylsilane ligands were interrogated using their palladium, rhodium, and platinum complexes. The pyrrole-based linker attenuates the donor ability of the ligand relative to its reported 1,2-phenylene congener while maintaining a similar steric profile. Additionally, the silyl donor connected to the N -pyrrolyl groups exhibits a weaker trans influence than the analogous ligand featuring 1,2-phenylene linkers.
more »
« less
Fluorometric imaging methods for palladium and platinum and the use of palladium for imaging biomolecules
Neither palladium nor platinum is an endogenous biological metal. Imaging palladium in biological samples, however, is becoming increasingly important because bioorthogonal organometallic chemistry involves palladium catalysis. In addition to being an imaging target, palladium has been used to fluorometrically image biomolecules. In these cases, palladium species are used as imaging-enabling reagents. This review article discusses these fluorometric methods. Platinum-based drugs are widely used as anticancer drugs, yet their mechanism of action remains largely unknown. We discuss fluorometric methods for imaging or quantifying platinum in cells or biofluids. These methods include the use of chemosensors to directly detect platinum, fluorescently tagging platinum-based drugs, and utilizing post-labeling to elucidate distribution and mode of action.
more »
« less
- Award ID(s):
- 0911092
- PAR ID:
- 10283984
- Date Published:
- Journal Name:
- Chemical Society Reviews
- Volume:
- 44
- Issue:
- 14
- ISSN:
- 0306-0012
- Page Range / eLocation ID:
- 4769 to 4791
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Isolable sulfonium-ylide stabilized palladium carbene complexes were synthesized through palladium(II)-induced cyclization of 1,2-alkynylarylsulfanes. X-ray crystallographic analysis characterized the maintenance of a palladium +2 oxidation state, with carbene-carbon–palladium bond lengths of 1.95 Å, indicating partial double bond character. These endocyclic sulfonium ylide carbenes represent the first characterized and/or isolable examples of this ligand class; such groups were previously proposed as reaction intermediates during cyclization–carbonylation reactions. A variety of palladium(II) complexes bearing sulfonium ylide carbene ligands, with differing substituents, were synthesized and the structure and stability of these complexes in solution were analyzed by 1H and 13C NMR spectroscopy, revealing reversibility and a stability dependence on substituents. The chirality of the sulfur heteroatom and the overall properties these ligands provide a potential electronic and steric alternative to existing carbene ligands, which could facilitate the future development of complementary metal-based reactivity.more » « less
-
Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and then formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10.more » « less
-
Abstract Motivation Cancer heterogeneity is observed at multiple biological levels. To improve our understanding of these differences and their relevance in medicine, approaches to link organ- and tissue-level information from diagnostic images and cellular-level information from genomics are needed. However, these ‘radiogenomic’ studies often use linear or shallow models, depend on feature selection, or consider one gene at a time to map images to genes. Moreover, no study has systematically attempted to understand the molecular basis of imaging traits based on the interpretation of what the neural network has learned. These studies are thus limited in their ability to understand the transcriptomic drivers of imaging traits, which could provide additional context for determining clinical outcomes. Results We present a neural network-based approach that takes high-dimensional gene expression data as input and performs non-linear mapping to an imaging trait. To interpret the models, we propose gene masking and gene saliency to extract learned relationships from radiogenomic neural networks. In glioblastoma patients, our models outperformed comparable classifiers (>0.10 AUC) and our interpretation methods were validated using a similar model to identify known relationships between genes and molecular subtypes. We found that tumor imaging traits had specific transcription patterns, e.g. edema and genes related to cellular invasion, and 10 radiogenomic traits were significantly predictive of survival. We demonstrate that neural networks can model transcriptomic heterogeneity to reflect differences in imaging and can be used to derive radiogenomic traits with clinical value. Availability and implementation https://github.com/novasmedley/deepRadiogenomics. Contact whsu@mednet.ucla.edu Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract The development of a platinum‐catalyzed desaturation of cyclic ketones to their conjugated α,β‐unsaturated counterparts is reported in this full article. A unique diene‐platinum complex was identified to be an efficient catalyst, which enables direct metal‐enolate formation. The reaction operates under mild conditions without using strong bases or acids. Good to excellent yields can be achieved for diverse and complex scaffolds. A wide range of functional groups, including those sensitive to acids, bases/nucleophiles, or palladium species, are tolerated, which represents a distinct feature from other known desaturation methods. Mechanistically, this platinum catalysis exhibits a fast and reversible α‐deprotonation followed by a rate‐determining β‐hydrogen elimination process, which is different from the prior Pd‐catalyzed desaturation method. Promising preliminary enantioselective desaturation using a chiral‐diene‐platinum complex has also been obtained.more » « less
An official website of the United States government

