A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm−1with a spectral resolution of ∼8 cm−1for sapphire and ∼10 cm−1for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm−1to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm−1were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements. 
                        more » 
                        « less   
                    
                            
                            Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array
                        
                    
    
            A new hyperspectral Raman imaging technique is described using a spatial heterodyne Raman spectrometer (SHRS) and a microlens array (MLA). The new technique enables the simultaneous acquisition of Raman spectra over a wide spectral range at spatially isolated locations within two spatial dimensions ( x, y) using a single exposure on a charge-coupled device (CCD) or other detector types such as a complementary metal-oxide semiconductor (CMOS) detector. In the SHRS system described here, a 4 × 4 mm MLA with 1600, 100 µm diameter lenslets is used to image the sample, with each lenslet illuminating a different region of the SHRS diffraction gratings and forming independent fringe images on the CCD. The fringe images from each lenslet contain the fully encoded Raman spectrum of the region of the sample “seen” by the lenslet. Since the SHRS requires no moving parts, all fringe images can be measured simultaneously with a single detector exposure, and in principle using a single laser shot, in the case of a pulsed laser. In this proof of concept paper, hyperspectral Raman spectra of a wide variety of heterogeneous samples are used to characterize the technique in terms of spatial and spectral resolution tradeoffs. It is shown that the spatial resolution is a function of the diameter of the MLA lenslets, while the number of spatial elements that can be resolved is equal to the number of MLA lenslets that can be imaged onto the SHRS detector. The spectral resolution depends on the spatial resolution desired, and the number of grooves illuminated on both diffraction gratings by each lenslet, or combination of lenslets in cases where they are grouped. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1829333
- PAR ID:
- 10283994
- Date Published:
- Journal Name:
- Applied Spectroscopy
- Volume:
- 74
- Issue:
- 8
- ISSN:
- 0003-7028
- Page Range / eLocation ID:
- 921 to 931
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            An approach is described for spectrally parallel hyperspectral mid-infrared imaging with spatial resolution dictated by fluorescence imaging. Quantum cascade laser (QCL)-based dual-comb mid-infrared spectroscopy enables the acquisition of infrared spectra at high speed (<1 millisecond) through the generation of optical beat patterns and radio-frequency detection. The high-speed nature of the spectral acquisition is shown to support spectral mapping in microscopy measurements. Direct detection of the transmitted infrared beam yields high signal-to-noise spectral information, but long infrared wavelengths impose low diffraction-limited spatial resolution. The use of fluorescence detected photothermal infrared (F-PTIR) imaging provides high spatial resolution tied directly to the integrated IR absorption. Computational imaging using a multi-agent consensus equilibrium (MACE) approach combines the high spatial resolution of F-PTIR and the high spectral information of dual-comb infrared transmission in a single optimized equilibrium hyperspectral data cube.more » « less
- 
            The ability to combine microscopy and spectroscopy is beneficial for directly monitoring physical and biological processes. Spectral imaging approaches, where a transmission diffraction grating is placed near an imaging sensor to collect both the spatial image and spectrum for each object in the field of view, provide a relatively simple method to simultaneously collect images and spectroscopic responses on the same sensor. Initially demonstrated with fluorescence spectroscopy, the use of spectral imaging in Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) can provide a vibrational spectrum containing molecularly specific information that can inform on chemical changes. However, a major complication to this approach is the spectral overlap that occurs when objects are spaced closely together horizontally. In this work, we add a dove prism to a spectral imaging instrument developed for SERS imaging, enabling rotation of the collected SERS image and dispersed spectrum onto the imaging complementary metal-oxide semiconductor (CMOS) sensor. We demonstrate that this effectively reduces spectral overlap for emitters with clear separation between them and emitters with slightly overlapping point spread functions thereby facilitating collection of unambiguous spectra from each emitter.more » « less
- 
            In the past two decades, spectral imaging technologies have expanded the capacity of fluorescence microscopy for accurate detection of multiple labels, separation of labels from cellular and tissue autofluorescence, and analysis of autofluorescence signatures. These technologies have been implemented using a range of optical techniques, such as tunable filters, diffraction gratings, prisms, interferometry, and custom Bayer filters. Each of these techniques has associated strengths and weaknesses with regard to spectral resolution, spatial resolution, temporal resolution, and signal-to-noise characteristics. We have previously shown that spectral scanning of the fluorescence excitation spectrum can provide greatly increased signal strength compared to traditional emission-scanning approaches. Here, we present results from utilizing a Hyperspectral Imaging Fluorescence Excitation Scanning (HIFEX) microscope system for live cell imaging. Live cell signaling studies were performed using HEK 293 and rat pulmonary microvascular endothelial cells (PMVECs), transfected with either a cAMP FRET reporter or a Ca2+ reporter. Cells were further labeled to visualize subcellular structures (nuclei, membrane, mitochondria, etc.). Spectral images were acquired using a custom inverted microscope (TE2000, Nikon Instruments) equipped with a 300W Xe arc lamp and tunable excitation filter (VF- 5, Sutter Instrument Co., equipped with VersaChrome filters, Semrock), and run through MicroManager. Timelapse spectral images were acquired from 350-550 nm, in 5 nm increments. Spectral image data were linearly unmixed using custom MATLAB scripts. Results indicate that the HIFEX microscope system can acquire live cell image data at acquisition speeds of 8 ms/wavelength band with minimal photobleaching, sufficient for studying moderate speed cAMP and Ca2+ events.more » « less
- 
            Pixel-level fusion of satellite images coming from multiple sensors allows for an improvement in the quality of the acquired data both spatially and spectrally. In particular, multispectral and hyperspectral images have been fused to generate images with a high spatial and spectral resolution. In literature, there are several approaches for this task, nonetheless, those techniques still present a loss of relevant spatial information during the fusion process. This work presents a multi scale deep learning model to fuse multispectral and hyperspectral data, each with high-spatial-and-low-spectral resolution (HSaLS) and low-spatial-and-high-spectral resolution (LSaHS) respectively. As a result of the fusion scheme, a high-spatial-and-spectral resolution image (HSaHS) can be obtained. In order of accomplishing this result, we have developed a new scalable high spatial resolution process in which the model learns how to transition from low spatial resolution to an intermediate spatial resolution level and finally to the high spatial-spectral resolution image. This step-by-step process reduces significantly the loss of spatial information. The results of our approach show better performance in terms of both the structural similarity index and the signal to noise ratio.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    