skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward polymer upcycling—adding value and tackling circularity
Plastics have revolutionized modern life, but have created a global waste crisis driven by our reliance and demand for low-cost, disposable materials. New approaches are vital to address challenges related to plastics waste heterogeneity, along with the property reductions induced by mechanical recycling. Chemical recycling and upcycling of polymers may enable circularity through separation strategies, chemistries that promote closed-loop recycling inherent to macromolecular design, and transformative processes that shift the life-cycle landscape. Polymer upcycling schemes may enable lower-energy pathways and minimal environmental impacts compared with traditional mechanical and chemical recycling. The emergence of industrial adoption of recycling and upcycling approaches is encouraging, solidifying the critical role for these strategies in addressing the fate of plastics and driving advances in next-generation materials design.  more » « less
Award ID(s):
1934887
PAR ID:
10284092
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Science
Volume:
373
Issue:
6550
ISSN:
0036-8075
Page Range / eLocation ID:
66 to 69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity. 
    more » « less
  2. One application of plastics that grew during the COVID-19 pandemic is for social distancing plastic shields, or protective barriers, made from polymethyl methacrylate (PMMA) such as transparent face guards. Although available for other applications, end-of-life impacts for barriers are currently lacking in the literature, and there is a need to fill in this gap to guide decisions. This study evaluated the end-of-life environmental impacts of PMMA barriers in the United States by using life cycle assessment. We evaluated five strategies including landfilling, waste-to-energy, mechanical recycling, chemical recycling and reuse. Data were sourced from literature and various life cycle inventory databases. The Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) was used as the life cycle impact assessment method. Landfilling exhibited the highest impact in all indicators and reuse demonstrated optimal results for global warming potential. A scenario analysis was conducted to explore a combination of strategies, revealing that the most promising approach involved a mix of 40% reuse, 20% mechanical recycling and 40% chemical recycling. Circular economy recommendations are proposed for managing these sources of plastic waste in the United States. 
    more » « less
  3. Plastic is ubiquitous across all aspects of modern life. Despite its usefulness, only 9% of all plastic waste ever produced has been recycled, leaving a tremendous amount that ends up in landfills and the environment. New strategies need to investigate using this waste plastic. This report analyzes upcycling waste plastics into membranes for water and gas separations. Polyethylene terephthalate, polystyrene, poly(vinyl chloride), polyethylene, polypropylene, and tire rubber have been studied for use as membranes. Future work needs to investigate greener solvents, health and safety aspects, costs, supply and demand, and life cycle assessments for upcycling plastic waste into membranes. 
    more » « less
  4. Abstract Chlorinated plastics are part of the everyday lives of consumers and producers alike. They can be found in buildings, automobiles, fashion, packaging, and many other places. This prevalence makes them a considerable part of the plastic waste crisis. Interest in “upcycling” (as opposed to recycling) has grown recently to augment the possibilities of managing plastic waste. The advances made in plastic upcycling have focused on polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET) and polystyrene (PS) while chlorinated plastics, chiefly polyvinyl chloride (PVC), have received much less attention. The release of chlorine‐containing molecules during treatment of chlorinated plastic greatly complicates cross‐method upcycling, or even the treatment of plastic mixes containing chlorinated plastics. This review presents a case for extracting value from chlorinated plastics by highlighting appealing upcycling products made owing to, or despite, the C‐Cl bond via depolymerization, carbonization and modification. This article is protected by copyright. All rights reserved. 
    more » « less
  5. Abstract The global production and consumption of plastics has increased at an alarming rate over the last few decades. The accumulation of pervasive and persistent waste plastic has concomitantly increased in landfills and the environment. The societal, ecological, and economic problems of plastic waste/pollution demand immediate and decisive action. In 2015, only 9% of plastic waste was successfully recycled in the United States. The major current recycling processes focus on the mechanical recycling of plastic waste; however, even this process is limited by the sorting/pretreatment of plastic waste and degradation of plastics during the process. An alternative to mechanical processes is chemical recycling of plastic waste. Efficient chemical recycling would allow for the production of feedstocks for various uses including fuels and chemical feedstocks to replace petrochemicals. This review focuses on the most recent advances for the chemical recycling of three major polymers found in plastic waste: PET, PE, and PP. Commercial processes for recycling hydrolysable polymers like polyesters or polyamides, polyolefins, or mixed waste streams are also discussed. 
    more » « less