skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development
(1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined.  more » « less
Award ID(s):
1922694
PAR ID:
10284114
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Membranes
Volume:
11
Issue:
5
ISSN:
2077-0375
Page Range / eLocation ID:
309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 2-Methylpyrazine (2MP), a flavoring agent, was identified and used as a novel greener solvent for nonsolvent-induced phase separation (NIPS) fabrication of poly(ether sulfone) (PES) ultrafiltration (UF) membranes. Flat-sheet membranes were fabricated with 2MP-cosolvent blends, N,N-dimethylacetamide (DMAc), or dimethyl sulfoxide (DMSO), to investigate the influence of solvent choice on membrane properties and performance. The resulting membranes were characterized to assess morphology, productivity, and molecular weight cutoff (MWCO). In addition, kinetic and thermodynamic aspects of solvent choice on the polymer “dope” solutions during the NIPS process were examined. 2MP-cosolvent blends resulted in membranes with noticeably different morphologies, which arise from miscibility-hindered solvent–nonsolvent exchange during membrane formation. Membrane permeance was significantly lower for 2MP-cosolvent membranes when compared to DMAc and DMSO membranes; however, their MWCOs were clearly decreased. This initial study shows that 2MP is a promising greener solvent candidate for NIPS, and further investigations are warranted. 
    more » « less
  2. Abstract Despite having favorable optoelectronic and thermomechanical properties, the wide application of semiconducting polymers still suffers from limitations, particularly with regards to their processing in solution which necessitates toxic chlorinated solvents due to their intrinsic low solubility in common organic solvents. This work presents a novel greener approach to the fabrication of organic electronics without the use of toxic chlorinated solvents. Low‐molecular‐weight non‐toxic branched polyethylene (BPE) is used as a solvent to process diketopyrrolopyrrole‐based semiconducting polymers, then the solvent‐induced phase separation (SIPS) technique is adopted to produce films of semiconducting polymers from solution for the fabrication of organic field‐effect transistors (OFETs). The films of semiconducting polymers prepared from BPE using SIPS show a more porous granular morphology with preferential edge‐on crystalline orientation compared to the semiconducting polymer film processed from chloroform. OFETs based on the semiconducting films processed from BPE show similar device characteristics to those prepared from chloroform without thermal annealing, confirming the efficiency and suitability of BPE to replace traditional chlorinated solvents for green organic electronics. This new greener processing approach for semiconducting polymers is potentially compatible with different printing techniques and is particularly promising for the preparation of porous semiconducting layers and the fabrication of OFET‐based electronics. 
    more » « less
  3. Abstract Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIWvs.doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology. 
    more » « less
  4. Printable and flexible organic solar panels are promising sources of inexpensive, large-scale renewable energy, where panels can be manufactured by printing from polymer inks. There are some limitations to these types of solar cells, however. First, toxic halogenated solvents have historically been necessary to dissolve polymers to make the ink. In addition, organic solar cells typically have high rates of recombination, which limits their efficiency. Here, we use a transient photovoltage (TPV) technique to measure charge lifetimes in cells made from two different organic solvents. The first solvent is toxic, halogenated dichlorobenzene (DCB) which is typically used to make organic solar cells. The other is a less toxic, non-halogenated solvent, carbon disulfide (CS2). By varying the processing methods in this way, we find that cells made from CS2 have longer charge lifetimes and higher efficiencies than those made with DCB, as well as a different recombination rate order. Possible reasons for these differences are explored using simple analytic modeling. Our model indicates that while bimolecular recombination is dominant in both types of cells, those processed with DCB may have more trap-assisted recombination present than those processed with CS2. Overall, this work demonstrates that we may be able to decrease the toxicity of organic solar cell manufacturing and simultaneously improve the efficiency of the devices, bringing this powerful method of capturing solar energy to the forefront of sustainable energy solutions. 
    more » « less
  5. Next-generation polymeric membranes must be derived from more environmentally friendly materials that have similar solubility and miscibility properties as their predecessors to form permeable and selective membranes. Bio-derived polymers, recycled plastics, and eco-friendly solvents have been demonstrated to produce membranes with similar permeability and selectivity as conventional counterparts, though matching membrane durability and cost-effectiveness remain as future research challenges. Slot die coating and 3D printing have been demonstrated to show the scalability of membrane fabrication. Life cycle assessments have become valuable tools in estimating the total environmental impacts of the manufacturing process and characterizing the sustainability of new materials. Recent advances have shortened the gap between materials innovation research and commercial application. 
    more » « less