ABSTRACT Climate change and an increase in endangered species, are examples of technological advances negatively impacting the environment. As technology demands increase, an earnest effort to reduce the environmental impact of processing and manufacturing related activities is critical. From a business perspective, minimizing or removing toxic process chemicals is a high impact area that can increase work environment safety and decrease waste management costs. This work presents processing considerations when transitioning to greener alternative polymer resist solvents, for applications in nanomanufacturing with sustainability considerations. Within government contracting, process modifications that change product form, fit, or function require qualification and atmore »
Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development
(1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined.
- Award ID(s):
- 1922694
- Publication Date:
- NSF-PAR ID:
- 10284114
- Journal Name:
- Membranes
- Volume:
- 11
- Issue:
- 5
- Page Range or eLocation-ID:
- 309
- ISSN:
- 2077-0375
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilicallymore »
-
Organic solvent filtration is an important industrial process. It is widely used in pharmaceutical manufacturing, chemical processing industry, semiconductor industry, auto assembly etc. Most of the particle filtration studies reported in open literature dealt with aqueous suspension medium. The current work has initiated a study of cross-flow solvent filtration behavior of microporous ethylene chlorotrifluoroethylene (ECTFE) membranes using 12 nm silica nanoparticles suspended in an aqueous solution containing 25% ethanol. In the constant pressure mode of operation of cross-flow microfiltration (MF), permeate samples were collected at different time intervals. The permeate particle size distribution (PSD) results for different experiments were identical.more »
-
Incorporation of nanoparticles into polymer blend films can lead to a synergistic combination of properties and functionalities. Adding a large concentration of nanoparticles into a polymer blend matrix via conventional melting or solution blending techniques, however, is challenging due to the tendency of particles to aggregate. Herein, we report a straightforward approach to generate polymer blend/nanoparticle ternary composite films with extremely high loadings of nanoparticles based on monomer-driven infiltration of polymer and photopolymerization. The fabrication process consists of three steps: (1) preparing a bilayer with a nanoparticle (NP) layer atop a polymer layer, (2) annealing of the bilayer with amore »
-
Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymericmore »