Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features.
more »
« less
Electronic-vibrational density evolution in a perylene bisimide dimer: mechanistic insights into excitation energy transfer
The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton–vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton–vibration interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these features through dephasing.
more »
« less
- Award ID(s):
- 1955302
- PAR ID:
- 10284115
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 29
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 15503 to 15514
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We detail several interesting features in the dynamics of an equilaterally shaped electronic excitation-transfer (EET) trimer with distance-dependent intermonomer excitation-transfer couplings. In the absence of electronic-vibrational coupling, symmetric and antisymmetric superpositions of two single-monomer excitations are shown to exhibit purely constructive, oscillatory, and purely destructive interference in the EET to the third monomer, respectively. In the former case, the transfer is modulated by motion in the symmetrical framework-expansion vibration induced by the Franck–Condon excitation. Distortions in the shape of the triangular framework degrade that coherent EET while activating excitation transfer in the latter case of an antisymmetric initial state. In its symmetrical configuration, two of the three single-exciton states of the trimer are degenerate. This degeneracy is broken by the Jahn–Teller-active framework distortions. The calculations illustrate closed, approximately circular pseudo-rotational wave-packet dynamics on both the lower and the upper adiabatic potential energy surfaces of the degenerate manifold, which lead to the acquisition after one cycle of physically meaningful geometric (Berry) phases of π. Another manifestation of Berry-phase development is seen in the evolution of the vibrational probability density of a wave packet on the lower Jahn–Teller adiabatic potential comprising a superposition of clockwise and counterclockwise circular motions. The circular pseudo-rotation on the upper cone is shown to stabilize the adiabatic electronic state against non-adiabatic internal conversion via the conical intersection, a dynamical process analogous to Slonczewski resonance. Strategies for initiating and monitoring these various dynamical processes experimentally using pre-resonant impulsive Raman excitation, short-pulse absorption, and multi-dimensional wave-packet interferometry are outlined in brief.more » « less
-
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.more » « less
-
We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton–vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang–Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton–vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/ e time of 0.5 ps, which is in good agreement with experimental results.more » « less
-
Two-dimensional optical spectroscopy experiments have examined photoprotective mechanisms in the Fenna–Matthews–Olson (FMO) photosynthetic complex, showing that exciton transfer pathways change significantly depending on the environmental redox conditions. Higgins et al. [Proc. Natl. Acad. Sci. U. S. A. 118(11), e2018240118 (2021)] have theoretically linked these observations to changes in a quantum vibronic coupling, whereby onsite energies are altered under oxidizing conditions such that exciton energy gaps are detuned from a specific vibrational motion of the bacteriochlorophyll a. These arguments rely on an analysis of exciton transfer rates within Redfield theory, which is known to provide an inaccurate description of the influence of the vibrational environment on the exciton dynamics in the FMO complex. Here, we use a memory kernel formulation of the hierarchical equations of motion to obtain non-perturbative estimations of exciton transfer rates, which yield a modified physical picture. Our findings indicate that onsite energy shifts alone do not reproduce the reported rate changes in the oxidative environment. We systematically examine a model that includes combined changes in both site energies and the frequency of a local vibration in the oxidized complex while maintaining consistency with absorption spectra and achieving qualitative, but not quantitative, agreement with the measured changes in transfer rates. Our analysis points to potential limitations of the FMO electronic Hamiltonian, which was originally derived by fitting spectra to perturbative theories. Overall, our work suggests that further experimental and theoretical analyses may be needed to understand the variations of exciton dynamics under different redox conditions.more » « less
An official website of the United States government

