skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Existence of Weak Solutions for Non-Simple Elastic Surface Models
We consider a class of models for nonlinearly elastic surfaces in this work.We have in mind thin, highly deformable structures modeled directly as two-dimensional nonlinearly elastic continua, accounting for finite membrane and bending strains and thickness change. We assume that the stored-energy density is polyconvex with respect to the second gradient of the deformation, and we require that it grow unboundedly as the local area ratio approaches zero. For sufficiently fast growth, we show that the latter is uniformly bounded away from zero at an energy minimizer. With this in hand, we rigorously derive the weak form of the Euler-Lagrange equilibrium equations.  more » « less
Award ID(s):
2006586
PAR ID:
10284166
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Elasticity
ISSN:
0374-3535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove the existence of a weak solution to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. The two are nonlinearly coupled over an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. The existence proof is constructive, consisting of two steps. First, the existence of a weak solution to a regularized problem is shown. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a classical solution to the original problem, when such a classical solution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media. 
    more » « less
  2. We study the deformations of elastic filaments confined within slowly shrinking circular boundaries, under contact forces with friction. We perform computations with a spring-lattice model that deforms like a thin inextensible filament of uniform bending stiffness. Early in the deformation, two lobes of the filament make contact. If the friction coefficient is small enough, one lobe slides inside the other; otherwise, the lobes move together or one lobe bifurcates the other. There follows a sequence of deformations that is a mixture of spiralling and bifurcations, primarily the former with small friction and the latter with large friction. With zero friction, a simple model predicts that the maximum curvature and the total elastic energy scale as the wall radius to the − 3 / 2 and − 2 powers, respectively. With non-zero friction, the elastic energy follows a similar scaling but with a prefactor up to eight times larger, due to delayering and bending with a range of small curvatures. For friction coefficients as large as 1, the deformations are qualitatively similar with and without friction at the outer wall. Above 1, the wall friction case becomes dominated by buckling near the wall. 
    more » « less
  3. We establish a nonlinear nonconservative mathematical framework for the acoustic-electro-elastic dynamics of the response of a piezoelectric disk to high-level acoustic excitation in the context of ultrasound acoustic energy transfer. Nonlinear parameter identification is performed to estimate the parameters representing nonlinear piezoelectric coefficients. The identification is based on exploiting the vibrational response of the disk operating in the thickness mode under dynamic actuation. The nonlinearly coupled electro-elastic governing equations, for the piezoelectric receiver subjected to acoustic excitation, are derived using the generalized Hamilton's principle. The method of multiple scales is used to obtain an approximate solution that forms the basis for parameter identification. The identified coefficients are then experimentally validated. The effects of varying these coefficients on the nonlinear response, optimal resistive electrical loading, and power generation characteristics of the receiver are investigated. 
    more » « less
  4. Abstract The Kresling truss structure, derived from Kresling origami, has been widely studied for its bi-stability and various other properties that are useful for diverse engineering applications. The stable states of Kresling trusses are governed by their geometry and elastic response, which involves a limited design space that has been well explored in previous studies. In this work, we present a magneto-Kresling truss design that involves embedding nodal magnets in the structure, which results in a more complex energy landscape, and consequently, greater tunability under mechanical deformation. We explore this energy landscape first along the zero-torque folding path and then release the restraint on the path to explore the complete two-degree-of-freedom behavior for various structural geometries and magnet strengths. We show that the magnetic interaction could alter the potential energy landscape by either changing the stable configuration, adjusting the energy well depth, or both. Energy wells with different minima endow this magneto-elastic structure with an outstanding energy storage capacity. More interestingly, proper design of the magneto-Kresling truss system yields a tri-stable structure, which is not possible in the absence of magnets. We also demonstrate various loading paths that can induce desired conformational changes of the structure. The proposed magneto-Kresling truss design sets the stage for fabricating tunable, scalable magneto-elastic multi-stable systems that can be easily utilized for applications in energy harvesting, storage, vibration control, as well as active structures with shape-shifting capability. 
    more » « less
  5. Using first-principles calculations, we predict highly stable cubic bialkali bismuthides Cs(Na, K)2Bi with several technologically important mechanical and anisotropic elastic properties. We investigate the mechanical and anisotropic elastic properties under hydrostatic tension and compression. At zero pressure, CsK2Bi is characterized by elastic anisotropy with maximum and minimum stiffness along the directions of [111] and [100], respectively. Unlike CsK2Bi, CsNa2Bi exhibits almost isotropic elastic behavior at zero pressure. We found that hydrostatic tension and compression change the isotropic and anisotropic mechanical responses of these compounds. Moreover, the auxetic nature of the CsK2Bi compound is tunable under pressure. This compound transforms into a material with a positive Poisson’s ratio under hydrostatic compression, while it holds a large negative Poisson’s ratio of about −0.45 along the [111] direction under hydrostatic tension. An auxetic nature is not observed in CsNa2Bi, and Poisson’s ratio shows completely isotropic behavior under hydrostatic compression. A directional elastic wave velocity analysis shows that hydrostatic pressure effectively changes the propagation pattern of the elastic waves of both compounds and switches the directions of propagation. Cohesive energy, phonon dispersion, and Born–Huang conditions show that these compounds are thermodynamically, mechanically, and dynamically stable, confirming the practical feasibility of their synthesis. The identified mechanisms for controlling the auxetic and anisotropic elastic behavior of these compounds offer a vital feature for designing and developing high-performance nanoscale electromechanical devices. 
    more » « less