Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.
more »
« less
Tundra greenness
Highlights•In North America, tundra productivity for the 2019 growing season (the most recent data available) rebounded strongly from the previous year, in tandem with record summer warmth following the cold summer of 2018.•Since 2016, greenness trends have diverged strongly by continent; peak summer greenness has declined sharply in North America but has remained above the long-term mean in Eurasia.•The long-term satellite record (1982-2019) indicates "greening" across most of the Arctic but some regions exhibit "browning," underscoring the dynamic linkages that exist between tundra ecosystems and other elements of a changing Arctic system.
more »
« less
- Award ID(s):
- 1928237
- PAR ID:
- 10284206
- Editor(s):
- J. Richter-Menge, M. L.
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- ISSN:
- 1520-0477
- Page Range / eLocation ID:
- S1–S429
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study applies an indicators framework to investigate climate drivers of tundra vegetation trends and variability over the 1982–2019 period. Previously known indicators relevant for tundra productivity (summer warmth index (SWI), coastal spring sea-ice (SI) area, coastal summer open-water (OW)) and three additional indicators (continentality, summer precipitation, and the Arctic Dipole (AD): second mode of sea level pressure variability) are analyzed with maximum annual Normalized Difference Vegetation Index (MaxNDVI) and the sum of summer bi-weekly (time-integrated) NDVI (TI-NDVI) from the Advanced Very High Resolution Radiometer time-series. Climatological mean, trends, and correlations between variables are presented. Changes in SI continue to drive variations in the other indicators. As spring SI has decreased, summer OW, summer warmth, MaxNDVI, and TI-NDVI have increased. However, the initial very strong upward trends in previous studies for MaxNDVI and TI-NDVI are weakening and becoming spatially and temporally more variable as the ice retreats from the coastal areas. TI-NDVI has declined over the last decade particularly over High Arctic regions and southwest Alaska. The continentality index (CI) (maximum minus minimum monthly temperatures) is decreasing across the tundra, more so over North America than Eurasia. The relationship has weakened between SI and SWI and TI-NDVI, as the maritime influence of OW has increased along with total precipitation. The winter AD is correlated in Eurasia with spring SI, summer OW, MaxNDVI, TI-NDVI, the CI and total summer precipitation. This winter connection to tundra emphasizes the role of SI in driving the summer indicators. The winter (DJF) AD drives SI variations which in turn shape summer OW, the atmospheric SWI and NDVI anomalies. The winter and spring indicators represent potential predictors of tundra vegetation productivity a season or two in advance of the growing season.more » « less
-
This Arctic Observing Network (AON) project focuses on maintaining and expanding our long-term network of measurements of carbon, water, and energy exchange in terrestrial systems in Alaska. These exchanges help regulate the Arctic System and its feedbacks to global climate. Thus, extending long-term observations is a key science priority for the observing-change component of the Study of Environmental Arctic Change (SEARCH). Detecting and interpreting change in arctic carbon (C), water, and energy fluxes requires a continuous year-round record over multiple years. Recent data syntheses and modeling studies of Arctic Carbon balance suggest that tundra is either a carbon dioxide (CO2) sink, a source, or neutral (e.g., McGuire et al., 2009, McGuire et al., 2012) . This uncertainty arises mainly from a lack of data on winter CO2 flux and how tundra responds to recent warming. Because of harsh, remote environments and the lack of line power, long-term measurements of arctic CO2 fluxes over the full year are rare. We have been measuring year-round C, water, and energy fluxes for eleven years in two broadly representative flagship observatories with long-term histories of research, at Imnavait Creek near Toolik Lake, Alaska. To help interpret inter-annual variability we began making plot-based Normalized Difference Vegetation Index (NDVI) measurements three times a summer at our Imnavait Creek sites.more » « less
-
Abstract. The Arctic sea ice cover is strongly influenced by internal variability on decadal time scales, affecting both short-term trends and the timing of the first ice-free summer. Several mechanisms of variability have been proposed, but how these mechanisms manifest both spatially and temporally remains unclear. The relative contribution of internal variability to observed Arctic sea ice changes also remains poorly quantified. Here, we use a novel technique called low-frequency component analysis to identify the dominant patterns of winter and summer decadal Arctic sea-ice variability in the satellite record. The identified patterns account for most of the observed regional sea ice variability and trends, and thus help to disentangle the role of forced and internal sea ice changes over the satellite record. In particular, we identify a mode of decadal ocean-atmosphere-sea ice variability, characterized by an anomalous atmospheric circulation over the central Arctic, that accounts for approximately 30 % of the accelerated decline in pan-Arctic summer sea-ice area between 2000 and 2012. For winter sea ice, we find that internal variability has dominated decadal trends in the Bering Sea, but has contributed less to trends in the Barents and Kara Seas. These results, which detail the first purely observation-based estimate of the contribution of internal variability to Arctic sea ice trends, suggest a lower estimate of the contribution from internal variability than most model-based assessments.more » « less
-
Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season.more » « less
An official website of the United States government

