The actuarially fair insurance premium reflects the expected loss for each insured. Given the dearth of cyber security loss data, market premiums could shed light on the true magnitude of cyber losses despite noise from factors unrelated to losses. To that end, we extract cyber insurance pricing information from the regulatory filings of 26 insurers. We provide empirical observations on how premiums vary by coverage type, amount, policyholder type, and over time. A method using Particle Swarm Optimization is introduced to iterate through candidate parameterized distributions with the goal of reducing error in predicting observed prices. We then aggregate the inferred loss models across 6,828 observed prices from all 26 insurers to derive the County Fair Cyber Loss Distribution. We demonstrate its value in decision support by applying it to a theoretical retail firm with annual revenue of $50M. The results suggest that the expected cyber liability loss is $428K, and that the firm faces a 2.3%chance of experiencing a cyber liability loss between $100K and $10M each year. The method could help organizations better manage cyber risk, regardless of whether they purchase insurance. 
                        more » 
                        « less   
                    
                            
                            Will Catastrophic Cyber-Risk Aggregation Thrive in the IoT Age? A Cautionary Economics Tale for (Re-)Insurers and Likes
                        
                    
    
            Service liability interconnections among networked IT and IoT-driven service organizations create potential channels for cascading service disruptions due to modern cybercrimes such as DDoS, APT, and ransomware attacks. These attacks are known to inflict cascading catastrophic service disruptions worth billions of dollars across organizations and critical infrastructure around the globe. Cyber-insurance is a risk management mechanism that is gaining increasing industry popularity to cover client (organization) risks after a cyber-attack. However, there is a certain likelihood that the nature of a successful attack is of such magnitude that an organizational client’s insurance provider is not able to cover the multi-party aggregate losses incurred upon itself by its clients and their descendants in the supply chain, thereby needing to re-insure itself via other cyber-insurance firms. To this end, one question worth investigating in the first place is whether an ecosystem comprising a set of profit-minded cyber-insurance companies, each capable of providing re-insurance services for a service-networked IT environment, is economically feasible to cover the aggregate cyber-losses arising due to a cyber-attack. Our study focuses on an empirically interesting case of extreme heavy tailed cyber-risk distributions that might be presenting themselves to cyber-insurance firms in the modern Internet age in the form of catastrophic service disruptions, and could be a possible standard risk distribution to deal with in the near IoT age. Surprisingly, as a negative result for society in the event of such catastrophes, we prove via a game-theoretic analysis that it may not be economically incentive compatible , even under i.i.d. statistical conditions on catastrophic cyber-risk distributions, for limited liability-taking risk-averse cyber-insurance companies to offer cyber re-insurance solutions despite the existence of large enough market capacity to achieve full cyber-risk sharing. However, our analysis theoretically endorses the popular opinion that spreading i.i.d. cyber-risks that are not catastrophic is an effective practice for aggregate cyber-risk managers, a result established theoretically and empirically in the past. A failure to achieve a working re-insurance market in critically demanding situations after catastrophic cyber-risk events strongly calls for centralized government regulatory action/intervention to promote risk sharing through re-insurance activities for the benefit of service-networked societies in the IoT age. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10284258
- Date Published:
- Journal Name:
- ACM Transactions on Management Information Systems
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2158-656X
- Page Range / eLocation ID:
- 1 to 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Insurance premiums reflect expectations about the future losses of each insured. Given the dearth of cyber security loss data, market premiums could shed light on the true magnitude of cyber losses despite noise from factors unrelated to losses. To that end, we extract cyber insurance pricing information from the regulatory filings of 26 insurers. We provide empirical observations on how premiums vary by coverage type, amount, and policyholder type and over time. A method using particle swarm optimisation and the expected value premium principle is introduced to iterate through candidate parameterised distributions with the goal of reducing error in predicting observed prices. We then aggregate the inferred loss models across 6,828 observed prices from all 26 insurers to derive the County Fair Cyber Loss Distribution . We demonstrate its value in decision support by applying it to a theoretical retail firm with annual revenue of $50M. The results suggest that the expected cyber liability loss is $428K and that the firm faces a 2.3% chance of experiencing a cyber liability loss between $100K and $10M each year. The method and resulting estimates could help organisations better manage cyber risk, regardless of whether they purchase insurance.more » « less
- 
            With the rapid adoption of web services, the need to protect against various threats has become imperative for organizations operating in cyberspace. Organizations are increasingly opting to get financial cover in the event of losses due to a security incident. This helps them safeguard against the threat posed to third-party services that the organization uses. It is in the organization’s interest to understand the insurance requirements and procure all necessary direct and liability coverages. This helps transfer some risks to the insurance providers. However, cyber insurance policies often list details about coverages and exclusions using legalese that can be difficult to comprehend. Currently, it takes a significant manual effort to parse and extract knowledgeable rules from these lengthy and complicated policy documents. We have developed a semantically rich machine processable framework to automatically analyze cyber insurance policy and populate a knowledge graph that efficiently captures various inclusion and exclusion terms and rules embedded in the policy. In this paper, we describe this framework that has been built using technologies from AI, including Semantic Web, Modal/ Deontic Logic, and Natural Language Processing. We have validated our approach using industry standards proposed by the United States Federal Trade Commission (FTC) and applying it against publicly available policies of 7 cyber insurance vendors. Our system will enable cyber insurance seekers to automatically analyze various policy documents and make a well informed decision by identifying its inclusions and exclusions.more » « less
- 
            There are two strategic and longstanding questions about cyber risk that organizations largely have been unable to answer: What is an organization's estimated risk exposure and how does its security compare with peers? Answering both requires industry-wide data on security posture, incidents, and losses that, until recently, have been too sensitive for organizations to share. Now, privacy enhancing technologies (PETs) such as cryptographic computing can enable the secure computation of aggregate cyber risk metrics from a peer group of organizations while leaving sensitive input data undisclosed. As these new aggregate data become available, analysts need ways to integrate them into cyber risk models that can produce more reliable risk assessments and allow comparison to a peer group. This paper proposes a new framework for benchmarking cyber posture against peers and estimating cyber risk within specific economic sectors using the new variables emerging from secure computations. We introduce a new top-line variable called the Defense Gap Index representing the weighted security gap between an organization and its peers that can be used to forecast an organization's own security risk based on historical industry data. We apply this approach in a specific sector using data collected from 25 large firms, in partnership with an industry ISAO, to build an industry risk model and provide tools back to participants to estimate their own risk exposure and privately compare their security posture with their peers.more » « less
- 
            Internet-of-things (IoT) introduce new attack surfaces for power grids with the usage of Wi-Fi enabled high wattage appliances. Adversaries can use IoT networks as a foothold to significantly change load demands and cause physical disruptions in power systems. This new IoT-based attack makes current security mechanisms, focusing on either power systems or IoT clouds, ineffective. To defend the attack, we propose to use a data-centric edge computing infrastructure to host defense mechanisms in IoT clouds by integrating physical states in decentralized regions of a power grid. By enforcing security policies on IoT devices, we can significantly limit the range of malicious activities, reducing the impact of IoT-based attacks. To fully understand the impact of data-centric edge computing on IoT clouds and power systems, we developed a cyber-physical testbed simulating six different power grids. Our preliminary results show that performance overhead is negligible, with less than 5% on average.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    