skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mind the Gap: Securely modeling cyber risk based on security deviations from a peer group
There are two strategic and longstanding questions about cyber risk that organizations largely have been unable to answer: What is an organization's estimated risk exposure and how does its security compare with peers? Answering both requires industry-wide data on security posture, incidents, and losses that, until recently, have been too sensitive for organizations to share. Now, privacy enhancing technologies (PETs) such as cryptographic computing can enable the secure computation of aggregate cyber risk metrics from a peer group of organizations while leaving sensitive input data undisclosed. As these new aggregate data become available, analysts need ways to integrate them into cyber risk models that can produce more reliable risk assessments and allow comparison to a peer group. This paper proposes a new framework for benchmarking cyber posture against peers and estimating cyber risk within specific economic sectors using the new variables emerging from secure computations. We introduce a new top-line variable called the Defense Gap Index representing the weighted security gap between an organization and its peers that can be used to forecast an organization's own security risk based on historical industry data. We apply this approach in a specific sector using data collected from 25 large firms, in partnership with an industry ISAO, to build an industry risk model and provide tools back to participants to estimate their own risk exposure and privately compare their security posture with their peers.  more » « less
Award ID(s):
2131541
PAR ID:
10549820
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
arXiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have shown increased cyber attacks targeting less secure elements in the software supply chain and causing fatal damage to businesses and organizations. Past well-known examples of software supply chain attacks are the SolarWinds or log4j incidents that have affected thousands of customers and businesses. The US government and industry are equally interested in enhancing soft- ware supply chain security. On February 22, 2023, researchers from the NSF-supported Secure Software Supply Chain Center (S3C2) conducted a Secure Software Supply Chain Summit with a diverse set of 17 practitioners from 15 companies. The goal of the Summit is to enable sharing between industry practitioners having practical experiences and challenges with software supply chain security and helping to form new collaborations. We conducted six-panel discussions based upon open-ended questions regarding software bill of materials (SBOMs), malicious commits, choosing new dependencies, build and deploy, the Executive Order 14028, and vulnerable dependencies. The open discussions enabled mutual sharing and shed light on common challenges that industry practitioners with practical experience face when securing their software supply chain. In this paper, we provide a summary of the Summit. 
    more » « less
  2. null (Ed.)
    Service liability interconnections among networked IT and IoT-driven service organizations create potential channels for cascading service disruptions due to modern cybercrimes such as DDoS, APT, and ransomware attacks. These attacks are known to inflict cascading catastrophic service disruptions worth billions of dollars across organizations and critical infrastructure around the globe. Cyber-insurance is a risk management mechanism that is gaining increasing industry popularity to cover client (organization) risks after a cyber-attack. However, there is a certain likelihood that the nature of a successful attack is of such magnitude that an organizational client’s insurance provider is not able to cover the multi-party aggregate losses incurred upon itself by its clients and their descendants in the supply chain, thereby needing to re-insure itself via other cyber-insurance firms. To this end, one question worth investigating in the first place is whether an ecosystem comprising a set of profit-minded cyber-insurance companies, each capable of providing re-insurance services for a service-networked IT environment, is economically feasible to cover the aggregate cyber-losses arising due to a cyber-attack. Our study focuses on an empirically interesting case of extreme heavy tailed cyber-risk distributions that might be presenting themselves to cyber-insurance firms in the modern Internet age in the form of catastrophic service disruptions, and could be a possible standard risk distribution to deal with in the near IoT age. Surprisingly, as a negative result for society in the event of such catastrophes, we prove via a game-theoretic analysis that it may not be economically incentive compatible , even under i.i.d. statistical conditions on catastrophic cyber-risk distributions, for limited liability-taking risk-averse cyber-insurance companies to offer cyber re-insurance solutions despite the existence of large enough market capacity to achieve full cyber-risk sharing. However, our analysis theoretically endorses the popular opinion that spreading i.i.d. cyber-risks that are not catastrophic is an effective practice for aggregate cyber-risk managers, a result established theoretically and empirically in the past. A failure to achieve a working re-insurance market in critically demanding situations after catastrophic cyber-risk events strongly calls for centralized government regulatory action/intervention to promote risk sharing through re-insurance activities for the benefit of service-networked societies in the IoT age. 
    more » « less
  3. Recent years have shown increased cyber attacks targeting less secure elements in the software supply chain and causing fatal damage to businesses and organizations. Past well-known examples of software supply chain attacks are the SolarWinds or log4j incidents that have affected thousands of customers and businesses. The US government and industry are equally interested in enhancing software supply chain security. On June 7, 2023, researchers from the NSF-supported Secure Software Supply Chain Center (S3C2) conducted a Secure Software Supply Chain Summit with the diverse set of 17 practitioners from 13 government agencies. The goal of the Summit was two-fold: (1) to share our observations from our previous two summits with industry, and (2) to enable sharing between individuals at the government agencies regarding practical experiences and challenges with software supply chain security. For each discussion topic, we presented our observations and take-aways from the industry summits to spur conversation. We specifically focused on the Executive Order 14028, software bill of materials (SBOMs), choosing new dependencies, provenance and self-attestation, and large language models. The open discussions enabled mutual sharing and shed light on common challenges that government agencies see as impacting government and industry practitioners when securing their software supply chain. In this paper, we provide a summary of the Summit. 
    more » « less
  4. Cybersecurity is a concern for organizations in this era. However, strengthening the security of an organization’s internal network may not be sufficient since modern organizations depend on third parties, and these dependencies may open new attack paths to cybercriminals. Cyber Third-Party Risk Management (C-TPRM) is a relatively new concept in the business world. All vendors or partners possess a potential security vulnerability and threat. Even if an organization has the best cybersecurity practice, its data, customers, and reputation may be at risk because of a third party. Organizations seek effective and efficient methods to assess their partners’ cybersecurity risks. In addition to intrusive methods to assess an organization’s cybersecurity risks, such as penetration testing, non-intrusive methods are emerging to conduct C-TPRM more easily by synthesizing the publicly available information without requiring any involvement of the subject organization. In this study, the existing methods for C-TPRM built by different companies are presented and compared to discover the commonly used indicators and criteria for the assessments. Additionally, the results of different methods assessing the cybersecurity risks of a specific organization were compared to examine reliability and consistency. The results showed that even if there is a similarity among the results, the provided security scores do not entirely converge. 
    more » « less
  5. This report discusses Digital Forensics and Cyber-Security and different vulnerabilities that put the users at risk of compromising their sensitive data and making it available to attackers. With the raising of new threats aiming at technology, some people are not aware of hackers stealing their data. This study will discuss what Cyber-Security is and how many people are aware of what it all entails. This study will also recommendations on how to recognize attacks and learn basic terms to help inform the public. The study utilizes surveys of students from Hampton University so the authors can make the proper analysis and recommendations regarding the issue. 
    more » « less