Different methods exist to measure or estimate actual crop evapotranspiration (ETa). However, some methods require a large number of data input or strict field conditions. Remote sensing based ETa algorithms based on extreme thermal pixels (hot and cold) have limitations when required extreme pixels are not present in the acquired thermal infra-red imagery. In addition, satellite overpass frequency and spatial pixel resolution may be a limitation for some agricultural fields and micro-climates. Surface energy balance methods that use surface radiometric temperatures often fail to perform well under drought, limited irrigation, salt affected soils, or under sparse vegetation conditions. One option is to measure or estimate the crop/surface sensible heat flux through the aerodynamic temperature approach, then calculate the available energy and solve the energy balance for latent heat flux. Thus, this study presents different published algorithms that characterize the crop or field surface aerodynamic temperature and then applies them to different conditions for evaluation. Determining spatial ETa continuously has the potential to improve the irrigation water management decision making. The aerodynamic temperature approach was initially developed with good results as a function of surface radiometric temperature, air temperature, crop leaf area index, and wind speed or surface aerodynamic resistance. However, the inclusion of the crop fractional percent cover and of a new resistance term (turbulent-mixing row resistance) greatly improved the estimation of the sensible heat and latent heat fluxes, when evaluated with heat flux data derived from eddy covariance energy balance towers. Results also indicate that the aerodynamic method has transferability potential to different regions, crops, and irrigation methods than the conditions encountered in the method development.
more »
« less
Using Machine Learning to Integrate On-Farm Sensors and Agro-Meteorology Networks into Site-Specific Decision Support
Highlights Machine learning can incorporate a variety of data from low-cost sensors and estimate actual ET by comparison with short-term, higher-cost measurements. On-farm weather monitoring can be leveraged to estimate site-specific crop-water requirements. Expanding spatial coverage of weather and actual ET through on-farm monitoring will facilitate localization and leverage publicly available weather data to guide irrigation decisions and improve irrigation water management. Abstract . One of the basic challenges to adopting science-based irrigation scheduling is providing reliable, site-specific estimates of actual crop water demand. While agro-meteorology networks cover most agricultural production areas in the U.S., widely spaced stations represent regionally specific, rather than site-specific, conditions. A variety of low to moderate cost commercial weather stations are available but do not provide directly useful information, such as actual evapotranspiration (ETa), or the ability to incorporate additional sensors. We demonstrate that machine learning methods can provide real-time, site-specific information about ETa and crop water demand using on-farm sensors and public weather information. Two years of field experiments were conducted at four irrigated field sites with crops including snap beans, alfalfa, and pasture. On-farm data were compared to publicly available data originating at nearby agro-meteorology network stations. The machine learning procedure can robustly estimate ETa using data from a few basic sensors, but the resulting estimate is sensitive to the range of conditions that are used as training data. The results demonstrate that machine learning can be used with affordable sensors and publicly available data to improve local estimates of crop water demand when high-quality measurements can be co-located for short periods of time. Supplementary sensors can also be integrated into a tailored monitoring plan to estimate crop stress and other operational considerations. Keywords: Agro-meteorology, Irrigation requirement, Machine learning, Site-specific Irrigation.
more »
« less
- Award ID(s):
- 1848019
- PAR ID:
- 10284338
- Date Published:
- Journal Name:
- Transactions of the ASABE
- Volume:
- 63
- Issue:
- 5
- ISSN:
- 2151-0040
- Page Range / eLocation ID:
- 1427 to 1439
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The evaluation of historical water use in the Upper Rio Grande Basin (URGB), United States and Mexico, using Landsat-derived actual evapotranspiration (ETa) from 1986 to 2015 is presented here as the first study of its kind to apply satellite observations to quantify long-term, basin-wide crop consumptive use in a large basin. The rich archive of Landsat imagery combined with the Operational Simplified Surface Energy Balance (SSEBop) model was used to estimate and map ETa across the basin and over irrigated fields for historical characterization of water-use dynamics. Monthly ETa estimates were evaluated using six eddy-covariance (EC) flux towers showing strong correspondence (r2 > 0.80) with reasonable error rates (root mean square error between 6 and 19 mm/month). Detailed spatiotemporal analysis using peak growing season (June–August) ETa over irrigated areas revealed declining regional crop water-use patterns throughout the basin, a trend reinforced through comparisons with gridded ETa from the Max Planck Institute (MPI). The interrelationships among seven agro-hydroclimatic variables (ETa, Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), maximum air temperature (Ta), potential ET (ETo), precipitation, and runoff) are all summarized to support the assessment and context of historical water-use dynamics over 30 years in the URGB.more » « less
-
Abstract Agriculture is the largest user of water in the United States. Yet, we do not understand the spatially resolved sources of irrigation water use (IWU) by crop. The goal of this study is to estimate crop‐specific IWU from surface water withdrawals (SWW), total groundwater withdrawals (GWW), and nonrenewable groundwater depletion (GWD). To do this, we employ the PCR‐GLOBWB 2 global hydrology model to partition irrigation information from the U.S. Geological Survey Water Use Database to specific crops across the Continental United States (CONUS). We incorporate high‐resolution input data on agricultural production and climate within the CONUS to obtain crop‐specific irrigation estimates for SWW, GWW, and GWD for 20 crops and crop groups from 2008 to 2020 at county spatial resolution. Over the study period, SWW decreased by 20%, while both GWW and GWD increased by 3%. On average, animal feed (alfalfa/hay) uses the most irrigation water across all water sources: 33 from SWW, 13 from GWW, and 10 km3/yr from GWD. Produce used less SWW (43%), but more GWW (57%), and GWD (27%) over the study time‐period. The largest changes in IWU for each water source between the years 2008 and 2020 are: rice (SWW decreased by 71%), sugar beets (GWW increased by 232%), and rapeseed (GWD increased by 405%). These results present the first national‐scale assessment of irrigation by crop, water source, and year. In total, we contribute nearly 2.5 million data points to the literature (3,142 counties; 13 years; 3 water sources; and 20 crops).more » « less
-
Abstract Midwestern cities require forecasts of surface nitrate loads to bring additional treatment processes online or activate alternative water supplies. Concurrently, networks of nitrate monitoring stations are being deployed in river basins, co‐locating water quality observations with established stream gauges. However, tools to evaluate the future value of expanded networks to improve water quality forecasts remains challenging. Here, we construct a synthetic data set of stream discharge and nitrate for the Wabash River Basin—one of the United States’ most nutrient polluted basins—using the established Agro‐IBIS and THMB models. Synthetic data enables rapid, unbiased and low‐cost assessment of potential sensor placements to support management objectives, such as near‐term forecasting. Using the synthetic data, we established baseline 1‐day forecasts for surface water nitrate at 12 cities in the basin using support vector machine regression (SVMR; RMSE 0.48–3.3 ppm). Next, we used the SVMRs to evaluate the improvement in forecast performance associated with deployment of additional nitrate sensors. We identified the optimal sensor placement to improve forecasts at each city, and the relative value of sensors at each candidate location. Finally, we assessed the co‐benefit realized by other cities when a sensor is deployed to optimize a forecast at one city, finding significant positive externalities in all cases. Ultimately, our study explores the potential for machine learning to make near‐term predictions and critically evaluate the improvement realized by expanding a monitoring network. While we use nitrate pollution in the Wabash River Basin as a case study, this approach could be readily applied to any problem where the future value of sensors and network design are being evaluated.more » « less
-
Effective groundwater management is critical to future environmental, ecological, and social sustainability and requires accurate estimates of groundwater withdrawals. Unfortunately, these estimates are not readily available in most areas due to physical, regulatory, and social challenges. Here, we compare four different approaches for estimating groundwater withdrawals for agricultural irrigation. We apply these methods in a groundwater‐irrigated region in the state of Kansas, USA, where high‐quality groundwater withdrawal data are available for evaluation. The four methods represent a broad spectrum of approaches: (1) the hydrologically‐based Water Table Fluctuation method (WTFM); (2) the demand‐based SALUS crop model; (3) estimates based on satellite‐derived evapotranspiration (ET) data from OpenET; and (4) a landscape hydrology model which integrates hydrologic‐ and demand‐based approaches. The applicability of each approach varies based on data availability, spatial and temporal resolution, and accuracy of predictions. In general, our results indicate that all approaches reasonably estimate groundwater withdrawals in our region, however, the type and amount of data required for accurate estimates and the computational requirements vary among approaches. For example, WTFM requires accurate groundwater levels, specific yield, and recharge data, whereas the SALUS crop model requires adequate information about crop type, land use, and weather. This variability highlights the difficulty in identifying what data, and how much, are necessary for a reasonable groundwater withdrawal estimate, and suggests that data availability should drive the choice of approach. Overall, our findings will help practitioners evaluate the strengths and weaknesses of different approaches and select the appropriate approach for their application.more » « less
An official website of the United States government

