skip to main content

Title: Turbulence-level dependence of cosmic ray parallel diffusion
ABSTRACT Understanding the transport of energetic cosmic rays belongs to the most challenging topics in astrophysics. Diffusion due to scattering by electromagnetic fluctuations is a key process in cosmic ray transport. The transition from a ballistic to a diffusive-propagation regime is presented in direct numerical calculations of diffusion coefficients for homogeneous magnetic field lines subject to turbulent perturbations. Simulation results are compared with theoretical derivations of the parallel diffusion coefficient’s dependences on the energy and the fluctuation amplitudes in the limit of weak turbulence. The present study shows that the widely used extrapolation of the energy scaling for the parallel diffusion coefficient to high turbulence levels predicted by quasi-linear theory does not provide a universally accurate description in the resonant-scattering regime. It is highlighted here that the numerically calculated diffusion coefficients can be polluted for low energies due to missing resonant interaction possibilities of the particles with the turbulence. Five reduced-rigidity regimes are established, which are separated by analytical boundaries derived in this work. Consequently, a proper description of cosmic ray propagation can only be achieved by using a turbulence-level-dependent diffusion coefficient and can contribute to solving the Galactic cosmic ray gradient problem.
Authors:
; ; ; ;
Award ID(s):
2007323
Publication Date:
NSF-PAR ID:
10284397
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
498
Issue:
4
Page Range or eLocation-ID:
5051 to 5064
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundariesmore »into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $$>5$$ > 5  kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.« less
  2. ABSTRACT Understanding the time-scales for diffusive processes and their degree of anisotropy is essential for modelling cosmic ray transport in turbulent magnetic fields. We show that the diffusion time-scales are isotropic over a large range of energy and turbulence levels, notwithstanding the high degree of anisotropy exhibited by the components of the diffusion tensor for cases with an ordered magnetic field component. The predictive power of the classical scattering relation as a description for the relation between the parallel and perpendicular diffusion coefficients is discussed and compared to numerical simulations. Very good agreement for a large parameter space is found,more »transforming classical scattering relation predictions into a computational prescription for the perpendicular component. We discuss and compare these findings, in particular, the time-scales to become diffusive with the time-scales that particles reside in astronomical environments, the so-called escape time-scales. The results show that, especially at high energies, the escape times obtained from diffusion coefficients may exceed the time-scales required for diffusion. In these cases, the escape time cannot be determined by the diffusion coefficients.« less
  3. null (Ed.)
    Abstract Cosmic rays (CRs) with ∼ GeV energies can contribute significantly to the energy and pressure budget in the interstellar, circumgalactic, and intergalactic medium (ISM, CGM, IGM). Recent cosmological simulations have begun to explore these effects, but almost all studies have been restricted to simplified models with constant CR diffusivity and/or streaming speeds. Physical models of CR propagation/scattering via extrinsic turbulence and self-excited waves predict transport coefficients which are complicated functions of local plasma properties. In a companion paper, we consider a wide range of observational constraints to identify proposed physically-motivated cosmic-ray propagation scalings which satisfy both detailed Milky Way (MW)more »and extra-galactic γ-ray constraints. Here, we compare the effects of these models relative to simpler “diffusion+streaming” models on galaxy and CGM properties at dwarf through MW mass scales. The physical models predict large local variations in CR diffusivity, with median diffusivity increasing with galacto-centric radii and decreasing with galaxy mass and redshift. These effects lead to a more rapid dropoff of CR energy density in the CGM (compared to simpler models), in turn producing weaker effects of CRs on galaxy star formation rates (SFRs), CGM absorption profiles and galactic outflows. The predictions of the more physical CR models tend to lie “in between” models which ignore CRs entirely and models which treat CRs with constant diffusivity.« less
  4. Abstract We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆ starburst, and L⋆ galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ-ray emission from nearby and starburst galaxies. We reproduce the γ-ray observations of dwarf and L⋆ galaxies with constant isotropic diffusionmore »coefficient κ ∼ 3 × 1029 cm2 s−1. Advection-only and streaming-only models produce order-of-magnitude too large γ-ray luminosities in dwarf and L⋆ galaxies. We show that in models that match the γ-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ-ray emissivities. Models where CRs are “trapped” in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ-ray observations. For models with constant κ that match the γ-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.« less
  5. ABSTRACT We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic ray scattering on to magnetosonic and Alfvénic fluctuations in the GeV−PeV domain. We compute a set of diffusion coefficients from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated with both the Galactic halo and the extended disc, taking into account the different damping mechanisms of turbulent fluctuations acting in these environments. We confirm that the scattering rate associated with Alfvénic turbulence is highly suppressed if the anisotropy of the cascade is taken into account. On the othermore »hand, we highlight that magnetosonic modes play a dominant role in Galactic confinement of cosmic rays up to PeV energies. We implement the diffusion coefficients in the numerical framework of the dragon code, and simulate the equilibrium spectrum of different primary and secondary cosmic ray species. We show that, for reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of $\simeq 200 \, \mathrm{GV}$) are correctly reproduced within our framework, in both normalization and slope.« less