skip to main content


Title: Exploring graduate students’ collaborative problem-solving in engineering design tasks
This study explored seven engineering graduate students’ collaborative problem-solving (CPS) skills while working in interdisciplinary teams. Students worked in two different teams, in face-to-face and online environments, to solve complex manufacturing design challenges posed by their instructor. The students were assessed using an observational rubric with four dimensions: peer interactions, positive communication, tools and methods and iteration and adaption, and scored via each dimension’s associated attributes, and subsequently interviewed. Six students scored emergent or proficient in CPS and had slightly higher CPS scores during the second observation. One student demonstrated a limited ability for CPS and the observable CPS skills decreased during the project. Interviews revealed the importance of (1) relying on instructor and student chosen technologies for collaborative tasks, (2) recognising and drawing on peer expertise early in the project, (3) building trust during and outside of team meetings and (4) valuing off-site and online collaborative work. Findings advance the understanding of how graduate students working in interdisciplinary teams rely on particular features of collaboration to solve engineering design challenges, which may assist in developing future skills and fostering productive teamwork.  more » « less
Award ID(s):
1829008
NSF-PAR ID:
10284414
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Engineering Design
ISSN:
0954-4828
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Undergraduate writing skills in STEM fields, especially engineering, need improvement. Yet students in engineering fields often do not value them and underestimate the amount of writing they will do in their careers. University writing centers can be a helpful resource, but the peer writing tutors that often staff them need to be prepared for the differences in writing between humanities and STEM fields. The Writing Assignment Tutor Training in STEM (WATTS) model was designed to improve tutor confidence and student writing. In this innovative training, the writing center supervisor and STEM instructor collaboratively create a one-hour training for tutors about the assignment content, technical terminology, genre conventions, and instructor expectations. A research study on this multidisciplinary collaborative project is being conducted to determine the impact of WATTS on students, tutors, and faculty and to identify its mitigating and moderating effects, assessing the elements of the model that have the most impact. Data from all WATTS stakeholders—students, tutors, faculty and writing center staff—have been collected. Both quantitative and qualitative instruments were used, including pre- and post-surveys, interviews and focus groups. WATTS’ effects on student writing have been assessed by the comparison of pre- and post-tutoring reports using a normed rubric and have demonstrated statistically significantly improvement in student writing. The results are being used to develop a replicable, sustainable model for dissemination to other institutions and application within other STEM fields. Increasing collaboration between engineering instructors and writing centers is a desirable outcome and essential for WATTS dissemination to a broad audience. NSF funding of this project has enabled the investigators to expand WATTS to additional engineering courses, test key factors with more instructors, and refine the process. It is anticipated that the study will contribute valuable knowledge to facilitate the improvement of student writing in STEM fields. As the cost of higher education increases, institutions are pressured to graduate students in four years while engineering curricula are becoming more complex. WATTS presents an economical, effective method to improve student writing in the discipline. Several factors indicate that it has the potential for broad dissemination and impact and will provide a foundation for a sustainable model for future work as instructors become trainers for their colleagues, allowing additional ongoing expansion and implementation. WATTS serves as a model for institutions (large or small) to capitalize on existing infrastructure and resources to achieve large-scale improvements to undergraduate STEM writing while increasing interdisciplinary collaboration and institutional support. 
    more » « less
  2. Undergraduate STEM writing skills, especially in engineering fields, need improvement. Yet students in engineering fields often do not value writing skills and underestimate the amount of writing they will do in their careers. University writing centers can be a helpful resource, but peer writing tutors need to be prepared for the differences between writing for the humanities and writing in STEM fields. The Writing Assignment Tutor Training in STEM (WATTS) model is designed to improve tutor confidence and student writing. In this innovative training, the writing center supervisor collaborates with the STEM instructor to create a one-hour tutor-training where the tutors learn about the assignment content, vocabulary, and expectations. This multidisciplinary collaborative project builds on previous investigative work to determine the impact of WATTS on students, tutors, and faculty and to identify its mitigating and moderating effects. Data has been collected and analyzed from pre- and post- training surveys, interviews, and focus groups. In addition, the project studies WATTS effects on student writing pre- and post-tutoring. The team will use these results to develop a replicable, sustainable model for future expansion to other institutions and fields. By systematically collecting data and testing WATTS, the investigators will be able to identify its mitigating and moderating effects on different stakeholders and contribute valuable knowledge to STEM fields. This approach assesses the elements of the model that have the most impact and the extent to which WATTS can be used to increase collaboration between engineering instructors and writing centers. The project enables the investigators to expand WATTS to additional engineering courses, test key factors with more instructors, refine the process, and position WATTS for dissemination to a broad audience. As the cost of higher education rises, institutions are pressured to graduate students in four years and engineering curricula are becoming more complex. WATTS presents an economical, effective method to improve student writing in the discipline. Several factors indicate that it has the potential for broad dissemination and impact and will provide a foundation for a sustainable model for future work, as instructors become trainers for their colleagues, allowing additional ongoing expansion and implementation. WATTS serves as a model for institutions (large or small) to capitalize on existing infrastructure and resources to achieve large-scale improvements to undergraduate STEM writing while increasing interdisciplinary collaboration and institutional support. 
    more » « less
  3. Undergraduate STEM writing skills, especially in engineering fields, need improvement. Yet students in engineering fields often do not value writing skills and underestimate the amount of writing they will do in their careers. University writing centers can be a helpful resource, but peer writing tutors need to be prepared for the differences between writing for the humanities and writing in STEM fields. The Writing Assignment Tutor Training in STEM (WATTS) model is designed to improve tutor confidence and student writing. In this innovative training, the writing center supervisor collaborates with the STEM instructor to create a one-hour tutor-training where the tutors learn about the assignment content, vocabulary, and expectations. This multidisciplinary collaborative project builds on previous investigative work to determine the impact of WATTS on students, tutors, and faculty and to identify its mitigating and moderating effects. Data has been collected and analyzed from pre- and post- training surveys, interviews, and focus groups. In addition, the project studies WATTS effects on student writing pre- and post-tutoring. The team will use these results to develop a replicable, sustainable model for future expansion to other institutions and fields. By systematically collecting data and testing WATTS, the investigators will be able to identify its mitigating and moderating effects on different stakeholders and contribute valuable knowledge to STEM fields. This approach assesses the elements of the model that have the most impact and the extent to which WATTS can be used to increase collaboration between engineering instructors and writing centers. The project enables the investigators to expand WATTS to additional engineering courses, test key factors with more instructors, refine the process, and position WATTS for dissemination to a broad audience. As the cost of higher education rises, institutions are pressured to graduate students in four years and engineering curricula are becoming more complex. WATTS presents an economical, effective method to improve student writing in the discipline. Several factors indicate that it has the potential for broad dissemination and impact and will provide a foundation for a sustainable model for future work, as instructors become trainers for their colleagues, allowing additional ongoing expansion and implementation. WATTS serves as a model for institutions (large or small) to capitalize on existing infrastructure and resources to achieve large-scale improvements to undergraduate STEM writing while increasing interdisciplinary collaboration and institutional support. 
    more » « less
  4. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  5. null (Ed.)
    Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges. 
    more » « less