Robust Mask R-CNN (Mask Regional Convolutional Neural Network) methods are proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earthquakes. We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field. With data augmentation and parameters fine-tuning, Path Aggregation Network (PANet) with spatial attention mechanisms and High- resolution Network (HRNet) are introduced into Mask R-CNNs. The tests on three public datasets with low- or high-resolution images demonstrate that the proposed methods can achieve a big improvement over alternative networks, so the proposed method may be sufficient for crack detection for a variety of scales in real applications.
more »
« less
Detecting Cracks and Spalling Automatically in Extreme Events by End-to-end Deep Learning Frameworks
In this paper, we develop and implement end-to-end deep learning approaches to automatically detect two important types of structural failures, cracks and spalling, of buildings and bridges in extreme events such as major earthquakes. A total of 2,229 images were annotated, and are used to train and validate three newly developed Mask Regional Convolutional Neural Networks (Mask R-CNNs). In addition, three sets of public images for different disasters were used to test the accuracy of these models. For detecting and marking these two types of structural failures, one of proposed methods can achieve an accuracy of 67.6% and 81.1%, respectively, on low- and high-resolution images collected from field investigations. The results demonstrate that it is feasible to use the proposed end-to-end method for automatically locating and segmenting the damage using 2D images which can help human experts in cases of disasters.
more »
« less
- Award ID(s):
- 2036193
- PAR ID:
- 10284486
- Date Published:
- Journal Name:
- ISPRS Annals of Photogrammetry and Remote Sensing Spatial Information Science, XXIV ISPRS Congress, International Society for Photogrammetry and Remote Sensing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Underwater imaging enables nondestructive plankton sampling at frequencies, durations, and resolutions unattainable by traditional methods. These systems necessitate automated processes to identify organisms efficiently. Early underwater image processing used a standard approach: binarizing images to segment targets, then integrating deep learning models for classification. While intuitive, this infrastructure has limitations in handling high concentrations of biotic and abiotic particles, rapid changes in dominant taxa, and highly variable target sizes. To address these challenges, we introduce a new framework that starts with a scene classifier to capture large within‐image variation, such as disparities in the layout of particles and dominant taxa. After scene classification, scene‐specific Mask regional convolutional neural network (Mask R‐CNN) models are trained to separate target objects into different groups. The procedure allows information to be extracted from different image types, while minimizing potential bias for commonly occurring features. Using in situ coastal plankton images, we compared the scene‐specific models to the Mask R‐CNN model encompassing all scene categories as a single full model. Results showed that the scene‐specific approach outperformed the full model by achieving a 20% accuracy improvement in complex noisy images. The full model yielded counts that were up to 78% lower than those enumerated by the scene‐specific model for some small‐sized plankton groups. We further tested the framework on images from a benthic video camera and an imaging sonar system with good results. The integration of scene classification, which groups similar images together, can improve the accuracy of detection and classification for complex marine biological images.more » « less
-
Image data collected after natural disasters play an important role in the forensics of structure failures. However, curating and managing large amounts of post-disaster imagery data is challenging. In most cases, data users still have to spend much effort to find and sort images from the massive amounts of images archived for past decades in order to study specific types of disasters. This paper proposes a new machine learning based approach for automating the labeling and classification of large volumes of post-natural disaster image data to address this issue. More specifically, the proposed method couples pre-trained computer vision models and a natural language processing model with an ontology tailed to natural disasters to facilitate the search and query of specific types of image data. The resulting process returns each image with five primary labels and similarity scores, representing its content based on the developed word-embedding model. Validation and accuracy assessment of the proposed methodology was conducted with ground-level residential building panoramic images from Hurricane Harvey. The computed primary labels showed a minimum average difference of 13.32% when compared to manually assigned labels. This versatile and adaptable solution offers a practical and valuable solution for automating image labeling and classification tasks, with the potential to be applied to various image classifications and used in different fields and industries. The flexibility of the method means that it can be updated and improved to meet the evolving needs of various domains, making it a valuable asset for future research and development.more » « less
-
This paper proposes a pipeline to automatically track and measure displacement and vibration of structural specimens during laboratory experiments. The latest Mask Regional Convolutional Neural Network (Mask R-CNN) can locate the targets and monitor their movement from videos recorded by a stationary camera. To improve precision and remove the noise, techniques such as Scale-invariant Feature Transform (SIFT) and various filters for signal processing are included. Experiments on three small-scale reinforced concrete beams and a shaking table test are utilized to verify the proposed method. Results show that the proposed deep learning method can achieve the goal to automatically and precisely measure the motion of tested structural members during laboratory experiments.more » « less
-
null (Ed.)Systems for ML inference are widely deployed today, but they typically optimize ML inference workloads using techniques designed for conventional data serving workloads and miss critical opportunities to leverage the statistical nature of ML. In this paper, we present WILLUMP, an optimizer for ML inference that introduces two statistically-motivated optimizations targeting ML applications whose performance bottleneck is feature computation. First, WILLUMP automatically cascades feature computation for classification queries: WILLUMP classifies most data inputs using only high-value, low-cost features selected through empirical observations of ML model performance, improving query performance by up to 5× without statistically significant accuracy loss. Second, WILLUMP accurately approximates ML top-K queries, discarding low-scoring inputs with an automatically constructed approximate model and then ranking the remainder with a more powerful model, improving query performance by up to 10× with minimal accuracy loss. WILLUMP automatically tunes these optimizations’ parameters to maximize query performance while meeting an accuracy target. Moreover, WILLUMP complements these statistical optimizations with compiler optimizations to automatically generate fast inference code for ML applications. We show that WILLUMP improves the end-to-end performance of real-world ML inference pipelines curated from major data science competitions by up to 16× without statistically significant loss of accuracy.more » « less
An official website of the United States government

