skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design Principles to Support Physics and Engineering Learning in Complementary Classrooms and Field Trip Activities
We present design principles for leveraging the affordances of schools and an interactive physical science museum to design curriculum modules that result in students learning physics through the practices of science and engineering. The modules include a field trip program and pre and post activities implemented in elementary school classrooms. The design principles are the result of research conducted during the first two years of a three-year design-based implementation research (DBIR) project and conducted through a long term Research-Practice Partnership (RPP) and on iterative development and testing the field trips and activities with 18 classrooms ranging from grades 1 through 6 and representing a range of demographics.  more » « less
Award ID(s):
1824856
PAR ID:
10284563
Author(s) / Creator(s):
Editor(s):
Wolf, S.
Date Published:
Journal Name:
2020 Physics Education Research Conference (PERC) Proceedings
Page Range / eLocation ID:
358-363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research study was designed to evaluate the extent and the ways in which sixth-grade students developed their reasoning about the greenhouse effect and covariation as a result of their engagement with an instructional module that seamlessly integrates environmental science, mathematics, and technology. Quantitative and qualitative data were obtained from a design experiment in two sixth-grade classrooms and were compared to the data from a control group of students in a third sixth-grade classroom. The results from the quantitative analysis indicated that students in the treatment group demonstrated a greater development than the control group. The findings from the qualitative analysis illustrated that students developed sophisticated forms of reasoning about the greenhouse effect and covariation through their engagement with dynamic simulations and careful task design that prompted students to explore the covariational relationships underlying the science of the greenhouse effect. We consider the design of this instructional module to be valuable for future efforts to develop integrated science, technology, engineering, and mathematics (STEM) modules. 
    more » « less
  2. The purpose of the Digitally-Mediated Team Learning Workshop (sponsored by the National Science Foundation through a Dear Colleague Letter [NSF 18-017] via grant 1825007) was to ascertain the current state of the field and future research approaches for DMTL delivered through synchronous modalities in STEM classrooms for students in upper elementary grades through college. The overarching question for the workshop was: “How can we advance effective and scalable digital environments for synchronous team-based learning involving problem-solving and design activities within STEM classrooms for all learners?” The workshop explored the state of the field and future directions of DMTL through its four tracks: (a) student-facing and instructor-facing tools, (b) learning analytics, (c) pedagogical and andragogical strategies, and (d) inclusivity. 
    more » « less
  3. In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course. 
    more » « less
  4. NA (Ed.)
    This Research paper explores the activities within the biologically inspired design-focused engineering curriculum to determine if they fostered students’ engagement in learning. This work builds on concurrent research exploring students' application of BID in engineering and teachers’ implementation of BID within their respective engineering classrooms. Participants comprised ninth-grade high school students (n=12) enrolled in the first-year engineering course across two high schools. Qualitative content analysis was conducted on classroom observation field notes, student focus groups, teacher curriculum enactment surveys, and teacher interviews. The finding revealed that student engagement varied across the seven-week-long unit. In the initial week, engagement was relatively low since the activities were static and required learning to be scaffolded via worksheets. However, during weeks three through six, engagement positively shifted due to the activities being more dynamic, requiring students to engage in inquiry and design learning. Furthermore, students’ academic engagement was fostered due to hands-on experiences and workbased authentic problems presented in the unit, which encouraged collaboration. 
    more » « less
  5. Gresalfi, M. and (Ed.)
    Teachers in K-12 science classrooms play a key role in helping their students engage in computational thinking (CT) activities that reflect authentic science practices. However, we know less about how to support teachers in integrating CT into their classrooms. This paper presents a case of one science teacher over three years as she participated in a Design Based Implementation Research project focused on integrating CT into science curriculum. We analyze her professional growth as a designer and instructor as she created and implemented three computationally-enriched science units with the support of our research team. Results suggest that she became more confident in her understanding of and ability, leading to greater integration of CT in the science units. Relationships with the research team and co-design experiences mediated this growth. Findings yield implications for how best to support teachers in collaborative curriculum design. 
    more » « less