skip to main content


Title: Design Principles to Support Physics and Engineering Learning in Complementary Classrooms and Field Trip Activities
We present design principles for leveraging the affordances of schools and an interactive physical science museum to design curriculum modules that result in students learning physics through the practices of science and engineering. The modules include a field trip program and pre and post activities implemented in elementary school classrooms. The design principles are the result of research conducted during the first two years of a three-year design-based implementation research (DBIR) project and conducted through a long term Research-Practice Partnership (RPP) and on iterative development and testing the field trips and activities with 18 classrooms ranging from grades 1 through 6 and representing a range of demographics.  more » « less
Award ID(s):
1824856
NSF-PAR ID:
10284563
Author(s) / Creator(s):
Editor(s):
Wolf, S.
Date Published:
Journal Name:
2020 Physics Education Research Conference (PERC) Proceedings
Page Range / eLocation ID:
358-363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment. 
    more » « less
  2. Broadening the participation of underrepresented students in computer science fields requires careful design and implementation of culturally responsive curricula and technologies. Culturally Situated Design Tools (CSDTs) address this by engaging students in historic, cultural, and meaningful design projects based on community practices. To date, CSDT research has only been conducted in short interventions outside of CS classrooms. This paper reports on the first semester-long introductory CS course based on CSDTs, which was piloted with 51 high school students during the 2017-2018 school year. The goal of this study was to examine if a culturally responsive computing curriculum could teach computer science principles and improve student engagement. Pre-post tests, field notes, weekly teacher meetings, formative assessments, and teacher and student interviews were analyzed to assess successes and failures during implementation. The results indicate students learned the conceptual material in 6 months rather than in the 9 months previously required by the teacher. Students were also able to apply these concepts afterward when programming in Python, implying knowledge transfer. However, student opinions about culture and computing didn't improve, and student engagement was below initial expectations. Thus we explore some of the many challenges: keeping a fully integrated cultural curriculum while satisfying CS standards, maintaining student engagement, and building student agency and self-regulation. We end with a brief description for how we intend to address some of these challenges in the second iteration of this program, scheduled for fall 2018. After which a study is planned to compare this curriculum to others. 
    more » « less
  3. This research study was designed to evaluate the extent and the ways in which sixth-grade students developed their reasoning about the greenhouse effect and covariation as a result of their engagement with an instructional module that seamlessly integrates environmental science, mathematics, and technology. Quantitative and qualitative data were obtained from a design experiment in two sixth-grade classrooms and were compared to the data from a control group of students in a third sixth-grade classroom. The results from the quantitative analysis indicated that students in the treatment group demonstrated a greater development than the control group. The findings from the qualitative analysis illustrated that students developed sophisticated forms of reasoning about the greenhouse effect and covariation through their engagement with dynamic simulations and careful task design that prompted students to explore the covariational relationships underlying the science of the greenhouse effect. We consider the design of this instructional module to be valuable for future efforts to develop integrated science, technology, engineering, and mathematics (STEM) modules. 
    more » « less
  4. null (Ed.)
    The surge of interest in K-12 computer science (CS) over the past decade has led to a deep need for a corresponding expansion of trained teachers. The primary focus of most K-12 CS teacher professional development has been for current in-service teachers who have little background in CS. To raise the importance of CS within Colleges of Education, we believe that new pathways and experiences are needed for pre-service Education majors to learn more about authentic CS topics and pedagogy. This experience report summarizes our efforts over the past two years to prepare Secondary Math Education (SEMA) majors to teach AP CS Principles (AP CSP). Our approach consists of the following curricular activities: 1) a two-course sequence, with the first course mapping to the content topics of the AP CSP Curriculum Framework, and the second course consisting of a reflection of CS methods and pedagogy, including opportunities for SEMA students to develop and present their own AP CSP lesson plans; 2) opportunities for SEMA students to observe AP CSP classrooms in local high schools through our partnership with experienced AP CSP teachers; 3) summer participation in a College Board AP Summer Institute for AP CSP, and 4) a six-week ETS Praxis CS preparation modules-based course, offered to both pre-service SEMA students and in-service teachers. We summarize our lessons learned and present results that suggest our approach is preparing pre-service students with pedagogical and content knowledge that meets or exceeds current in-service training models (including an analysis of recent Praxis results for CS certification in our state). 
    more » « less
  5. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice PD model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice, and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al., 2017: Roth et al., 2018). The face-to-face PD model is expensive and difficult to scale. In this poster, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and practices in the context in which they will be teaching. In addition, there are scaffolded opportunities for teachers to learn from model videos by experienced teachers, try model units, and ultimately develop their own unit, with guidance. The PD model also attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Roth et al., 2018. Methods We followed a design-based research approach (DBR: Cobb et al., 2003: Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005). Data We iteratively designed, tested, and revised 17 modules across three pilot versions. Three small groups of teachers engaged in both synchronous and asynchronous components of the larger online course. They responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of COVID-19, online PD has taken on new urgency. AERA members will gain insight into the construction of an online PD for elementary science teachers/ Full digital poster available at: https://aera21-aera.ipostersessions.com/default.aspx?s=64-5F-86-2E-15-F8-C3-C0-45-C6-A0-B7-1D-90-BE-46 
    more » « less