skip to main content


Search for: All records

Award ID contains: 1824856

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The practice of persisting and learning from design failures is essential to engineering design and offers unique ways of knowing and learning for K-12 students. To understand how students engage in the practice of persisting and learning from design failures, we must first understand how, if at all, they recognize that a design failure has occurred. We studied a classroom of fourth grade students engaged in an engineering design challenge and examined the ways in which design failure occurred and how students recognized, neglected to recognize, or misinterpreted design failure. In addition to anticipating failure, conducting fair tests, and making focused observations, we found that students must have an understanding and awareness of the evolving criteria and constraints of the design problem in order to recognize design failure. If lacking an understanding and awareness of criteria and constraints represents a barrier to recognizing an initial design failure, it also represents a barrier to recognizing any subsequent design failures in the design process and thus a barrier to persisting and learning from design failures. 
    more » « less
  2. As the world becomes increasingly complex, students will be faced with problems that require outside-of-the-box thinking. The complexity of these problems is compounded when considering the needs of people and their impacts on the environment. The Next Generation Science Standards (NGSS) incorporate engineering design to develop students’ skills at defining and delimiting problems, designing solutions to problems, and optimizing the design solutions—all while maximizing benefit and minimizing risk (NGSS Lead States 2013). Design thinking furthers the engineering design process by acknowledging that solutions to engineering design problems may differ depending on the community the solution serves and the environment for which the solution is designed (Brown 2008). For example, if the challenge is to “build a strong building,” students located in Florida would consider whether the building could handle the strong winds and rains of a hurricane, while students located in California, where earthquakes are common, may view strong buildings as those that can withstand earthquakes. 
    more » « less
  3. null (Ed.)
    Communication of ideas involves the simultaneous efforts of verbal, physical and neurological processes (Sherr, 2008). In elementary classrooms where young students are in the process of developing their verbal capacities, gestures from both the teacher and students serve as a key component of communication of new ideas and the processing of social information (Foglia & Wilson, 2013). Thus far, research efforts to understand how students utilize gestures in the communication and understanding of ideas have focused primarily on mathematics and the physical sciences (see Nemirovsky & Ferrara, 2009; Nuñez, Edwards & Matos, 1999; Shapiro, 2014; Sherr, 2008). With the introduction of the Next Generation Science Standards (NGSS Lead States, 2013), students engineering is now included in K-12 instruction. Engineering education centers around designing and optimizing solutions to engineering challenges. The creation of a design solution differentiates engineering education from other classroom subject areas. Current work in engineering education focuses mostly on students’ words or drawings, leaving out gestures as an important component of students' communication of engineering designs. This study aimed to contribute to the general understanding of students’ use of gestures and manipulatives when discussing their engineering design solutions and is part of a larger NSF-funded project. Students participated in pre- and post-field trip classroom activities that extended learning done on an engineering-focused field trip to the local science center into the classroom. For this study, we focused on a module that challenged students to design a craft that either slowed the fall of a penny (classroom engineering design challenge) or hovered in a column of upward moving air (field trip engineering design challenge). We analyzed six videos (3 from the classroom and 3 from the field trip) of first-grade student explanations of their crafts to identify their use of gestures and prototyped craft design solutions in communicating. In this paper, we explore how student use of gestures and use of prototyped design solutions overlap and differentiate to understand how student sense-making can be understood through each. 
    more » « less
  4. null (Ed.)
    Interactive science centers are in a unique position to provide opportunities for engineering education through K-12 field trip programs. However, field trip programs are often disconnected from students’ classroom learning, and many K-12 teachers lack the engineering education background to make that connection. Engineering Explorations is a 3-year project funded by the National Science Foundation (NSF) program Research in the Formation of Engineers (RFE) (EEC-1824856 and EEC-1824859). The primary goal of this project is to develop and test engineering education modules that link K-12 students’ classroom learning to field trip experiences in an interactive science museum, increasing student learning and extending the field trip experiences. Each Engineering Explorations module consists of one 50-minute field trip program completed at an interactive science center and curriculum for three 50-minute lessons to be implemented by the classroom teacher before (2 lessons) and after (1 lesson) the field trip program. Our paper will present both development and research outcomes. 
    more » « less
  5. null (Ed.)
    We worked with local K–6 teachers to develop lesson plans that would connect a 50-minute engineering design challenge, completed during a field trip, to the students’ classroom learning. The result was a model for designing pre-visit classroom activities that develop students’ familiarity with phenomena, tools, and processes that will be used during the field trip and post-visit classroom activities that provide students with opportunities to reflect on some of their field trip experiences. While the field trip activity alone is an exciting and productive learning opportunity, students who complete the full set of classroom and field trip activities participate in a richer experience that engages them in more of the practices of science and engineering and more fully develops the disciplinary core ideas related to engineering and physical science. Each Engineering Exploration module includes four activities: an engineering design activity completed during a field trip to an interactive science museum, accompanied by two preactivities and one post activity done in students’ classroom and facilitated by their elementary school teacher. While each classroom activity was designed to take no more than 50 minutes, many teachers found it valuable to extend each lesson to allow for deeper discussion and engagement with the activities. The classroom experiences presented here are associated with a field trip program in which students iteratively design a craft out of paper and tape that will hover above a “fire” (upward moving column of air) while carrying a “sensor” (washer). The classroom activities surrounding this field trip help students develop conceptual understandings of forces to navigate the engineering design challenge. 
    more » « less
  6. Wolf, S. (Ed.)
    We present design principles for leveraging the affordances of schools and an interactive physical science museum to design curriculum modules that result in students learning physics through the practices of science and engineering. The modules include a field trip program and pre and post activities implemented in elementary school classrooms. The design principles are the result of research conducted during the first two years of a three-year design-based implementation research (DBIR) project and conducted through a long term Research-Practice Partnership (RPP) and on iterative development and testing the field trips and activities with 18 classrooms ranging from grades 1 through 6 and representing a range of demographics. 
    more » « less
  7. MOXI is an interactive science center focused on physics topics such as forces, energy, sound, light, and magnetism. MOXI’s exhibits and education program are informed by Physics Education Research (PER) and the Next Generation Science Standards (NGSS). As a result, MOXI is an outstanding laboratory for research on how people learn physics through interactive experiences and how best to support this learning. However, conducting research in public spaces with diverse audiences differs from classroom based research. These differences provide both opportunities and challenges. Effective research and program design requires multiple types of expertise including content, research design, and informal environments. In MOXI’s first two years of operation, we have conducted research across a wide variety of participants and topics through a research- practice partnership (RPP) model. This paper focuses on establishing RPPs and methodological considerations when conducting research in informal science education settings such as interactive science centers. 
    more » « less
  8. The Next Generation Science Standards have incorporated engineering standards, requiring K-12 teachers to teach engineering. Unfortunately, teachers are ill-prepared and have little comfort to introduce these unfamiliar complex topics into their classrooms. The University of California at Santa Barbara and MOXI, The Wolf Museum of Exploration + Innovation partnered up to tackle this problem and bring physics-related engineering activities to teachers through the MOXI Engineering Explorations program. A key challenge has been creating activities so that they are effective learning opportunities for first graders (6 years old) through sixth graders (12 years old). Here, we present design guidelines for adapting activities for younger and older children. This framework is also useful for other physics outreach programs that work with wide a range of age levels. 
    more » « less
  9. Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards. Focusing on multiple partners that serve youth in the same community provides opportunities for long-term collaborations and programs developed in response to local needs. In a significant shift from earlier sets of standards, the Next Generation Science Standards include engineering design, with the goal of providing students with a foundation “to better engage in and aspire to solve the major societal and environmental challenges they will face in decades ahead” (NGSS Lead States 2013, Appendix I). Including engineering in K–12 standards is a positive step forward in introducing students to engineering; however, K–12 teachers are not prepared to facilitate high-quality engineering activities. Research has consistently shown that elementary teachers are not confident in teaching science, especially physical science, and generally have little knowledge of engineering (Trygstad 2013). K–12 teachers, therefore, will need support. Our goal was to create a program that took advantage of the varied resources across a STEM (science, technology, engineering, and math) education ecosystem to support engineering instruction for youth across multiple contexts, while building the capacity of educators and meeting the needs of each organization. Specifically, we developed mutually reinforcing classroom and field trip activities to improve student learning and a curriculum to improve teacher learning. This challenging task required expertise in school-based standards, engineering education, informal education, teacher professional development, and classroom and museum contexts. 
    more » « less