skip to main content

Title: A mobile educational platform based on peer influence and instructional scaffolding for engaging students in out-of-class activities
It is a well-documented challenge to keep students engaged and motivated in out-of-class activities. More students now have part- or full-time jobs and less time to study. Supporting their academic growth and success requires acknowledging the higher commitments to the jobs while providing appropriate mechanisms to make the best use of their available times. This paper presents a mobile educational platform, Dysgu, that aims to engage students in out-of-class activities. An initial study completed on this platform investigates the role of peer influence to increase student engagement in an early college class. Data indicates students prefer Dysgu for out-of-class activities compared to traditional pen- and paper-based activities. Students noted that peer influence, in the form of scores compared to the rest of the class, was highly motivating. We also observed more on-time submissions when using Dysgu.
Authors:
; ; ; ;
Award ID(s):
1712030
Publication Date:
NSF-PAR ID:
10284576
Journal Name:
2021 International Conference on Advanced Learning Technologies (ICALT)
Page Range or eLocation-ID:
61 to 65
Sponsoring Org:
National Science Foundation
More Like this
  1. Student engagement with out-of-class activities is becoming more difficult as students spend fewer hours outside the classroom studying the content. This research developed a mobile educational platform, Dysgu, to provide students with an optimal learning experience outside of the classroom. Dysgu includes social networking and gamification features to increase student engagement. The platform offers interactive auto-graded assessments to help students practice concepts and take tests. Students can see their scores and a summary of the performance of the rest of the class. We used Dysgu for multiple out-of-class activities at two universities with different student demographics for two semesters. The data shows that students obtain better grades when using Dysgu. We also saw more on-time or ahead-of-time submissions with Dysgu. Survey responses indicated several Dysgu features which students found helpful. We conclude that digital educational platforms should consider features to support scaffolding to master the concept, peer influence to keep students engaged, self-reflection to foster critical thinking, and easy adaption of the platform to reduce faculty workload and improve students’ acceptance of the system.
  2. This paper presents an out-of-class active learning environment, called Dysgu. Dysgu presents an innovative approach to out-of-class activities by combining multiple dimensions of best practices from different spectrum of student learning into a coherent idea and delivering such activities with personalization and adaptation. The goal of the Dysgu system is to study the impact of frequent out-of-class activities on student learning and engagement when the students can compare their progress with the rest of the class and where the activities are smaller (in scope) with scaffolding support, are interactive in nature, and delivered via a mobile platform. Initial usability tests and software engineering quality matrices show that the software is easy to use, manage and extend.
  3. Keeping students engaged with the course contents between classes is challenging. Although out-of-class activities are used to address this challenge, they have limited impacts on improving student's engagement outside the classroom because of the lack of real-time feedback and progress updates. For this reason, these types of activities are less appealing to the current generation of students who feel the pull of instant gratification more intensely. This paper presents a mobile learning system, named Dysgu, which enables students to work on their out-of-class activities, compare their progress with the rest of the class, and improve their self-efficacy. The goal of Dysgu is to better engage students with out-of-class activities and reduce procrastination in those activities. By using Dysgu, faculty can facilitate and monitor learning even after the students leave the classroom and intervene early when students fall behind their peers.
  4. This research to practice work in progress paper will present a mobile learning environment, called Dysgu (`learning' in Welsh), which will provide enhanced learning experience outside the classroom. The Dysgu environment provides students with interactive and motivating out-of-class activities and accommodates personalization and adaptation to satisfy students' specific needs. This system employs a novel approach by incorporating engaging factors, such as interactive activities, adaptive mobile technology, social networking, and gamification to overcome the shortcoming of traditional out-of-class activities. Dysgu allows personalization to support student's study needs and adapts to student behaviors, class dynamics, and difficulty of the out-of-class activity. By having a mobile interactive learning environment, faculty will be able to facilitate learning even after the students leave the classroom and intervene early when students fall behind their peers.
  5. Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us tomore »reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints.« less