skip to main content

Title: ARNA, a Service robot for Nursing Assistance: System Overview and User Acceptability
Using robots capable of collaboration with humans to complete physical tasks in unstructured spaces is a rapidly growing approach to work. Particular examples where increased levels of automation can increase productivity include robots used as nursing assistants. In this paper, we present a mobile manipulator designed to serve as an assistant to nurses in patient walking and patient sitting tasks in hospital environments. The Adaptive Robotic Nursing Assistant (ARNA) robot consists of an omnidirectional base with an instrumented handlebar, and a 7-DOF robotic arm. We describe its components and the novelties in its mechanisms and instrumentation. Experiments with human subjects that gauge the usability and ease of use of the ARNA robot in a medical environment indicate that the robot will get significant actual usage, and are used as a basis for a discussion on how the robot's features facilitate its adaptability for use in other scenarios and environment.
; ; ; ; ; ; ;
Award ID(s):
2026584 1849213
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Background According to the US Bureau of Labor Statistics, nurses will be the largest labor pool in the United States by 2022, and more than 1.1 million nursing positions have to be filled by then in order to avoid a nursing shortage. In addition, the incidence rate of musculoskeletal disorders in nurses is above average in comparison with other occupations. Robot-assisted health care has the potential to alleviate the nursing shortage by automating mundane and routine nursing tasks. Furthermore, robots in health care environments may assist with safe patient mobility and handling and may thereby reduce the likelihood of musculoskeletal disorders. Objective This pilot study investigates the perceived ease of use and perceived usefulness (acceptability) of a customized service robot as determined by nursing students (as proxies for nursing staff in health care environments). This service robot, referred to as the Adaptive Robotic Nurse Assistant (ARNA), was developed to enhance the productivity of nurses through cooperation during physical tasks (eg, patient walking, item fetching, object delivery) as well as nonphysical tasks (eg, patient observation and feedback). This pilot study evaluated the acceptability of ARNA to provide ambulatory assistance to patients. Methods We conducted a trial with 24 participants to collectmore »data and address the following research question: Is the use of ARNA as an ambulatory assistive device for patients acceptable to nurses? The experiments were conducted in a simulated hospital environment. Nursing students (as proxies for nursing staff) were grouped in dyads, with one participant serving as a nurse and the other acting as a patient. Two questionnaires were developed and administrated to the participants based on the Technology Acceptance Model with respect to the two subscales of perceived usefulness and perceived ease of use metrics. In order to evaluate the internal consistency/reliability of the questionnaires, we calculated Cronbach alpha coefficients. Furthermore, statistical analyses were conducted to evaluate the relation of each variable in the questionnaires with the overall perceived usefulness and perceived ease of use metrics. Results Both Cronbach alpha values were acceptably high (.93 and .82 for perceived usefulness and perceived ease of use questionnaires, respectively), indicating high internal consistency of the questionnaires. The correlation between the variables and the overall perceived usefulness and perceived ease of use metrics was moderate. The average perceived usefulness and perceived ease of use metrics among the participants were 4.13 and 5.42, respectively, out of possible score of 7, indicating a higher-than-average acceptability of this service robot. Conclusions The results served to identify factors that could affect nurses’ acceptance of ARNA and aspects needing improvement (eg, flexibility, ease of operation, and autonomy level).« less
  2. Abstract

    Robot-assisted healthcare could help alleviate the shortage of nursing staff in hospitals and is a potential solution to assist with safe patient handling and mobility. In an attempt to off-load some of the physically-demanding tasks and automate mundane duties of overburdened nurses, we have developed the Adaptive Robotic Nursing Assistant (ARNA), which is a custom-built omnidirectional mobile platform with a 6-DoF robotic manipulator and a force sensitive walking handlebar. In this paper, we present a robot-specific neuroadaptive controller (NAC) for ARNA’s mobile base that employs online learning to estimate the robot’s unknown dynamic model and nonlinearities. This control scheme relies on an inner-loop torque controller and features convergence with Lyapunov stability guarantees. The NAC forces the robot to emulate a mechanical system with prescribed admittance characteristics during patient walking exercises and bed moving tasks. The proposed admittance controller is implemented on a model of the robot in a Gazebo-ROS simulation environment, and its effectiveness is investigated in terms of online learning of robot dynamics as well as sensitivity to payload variations.

  3. Abstract Background

    A robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome.


    As a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session.


    Analyses of variance across different scenarios show that disjunctive and time-indexedmore »optimization models significantly outperform two baseline schedules: staying on one robot throughout a session and switching robots halfway through a session. The disjunctive model results in higher skill gain than the time-indexed model in the given scenarios, and the optimization duration increases as the number of patients, robots and time steps increases. Additionally, we discuss how different model simplifications (e.g., perfectly known and predictable patient skill level) could be addressed in the future and how such software may eventually be used in practice.


    Though it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.

    « less
  4. Ishigami G., Yoshida K. (Ed.)
    This paper develops an autonomous tethered aerial visual assistant for robot operations in unstructured or confined environments. Robotic tele-operation in remote environments is difficult due to the lack of sufficient situational awareness, mostly caused by stationary and limited field-of-view and lack of depth perception from the robot’s onboard camera. The emerging state of the practice is to use two robots, a primary and a secondary that acts as a visual assistant to overcome the perceptual limitations of the onboard sensors by providing an external viewpoint. However, problems exist when using a tele-operated visual assistant: extra manpower, manually chosen suboptimal viewpoint, and extra teamwork demand between primary and secondary operators. In this work, we use an autonomous tethered aerial visual assistant to replace the secondary robot and operator, reducing the human-robot ratio from 2:2 to 1:2. This visual assistant is able to autonomously navigate through unstructured or confined spaces in a risk-aware manner, while continuously maintaining good viewpoint quality to increase the primary operator’s situational awareness. With the proposed co-robots team, tele-operation missions in nuclear operations, bomb squad, disaster robots, and other domains with novel tasks or highly occluded environments could benefit from reduced manpower and teamwork demand, along with improvedmore »visual assistance quality based on trustworthy risk-aware motion in cluttered environments.« less
  5. ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the samemore »domain; whereas in the domain-transfer scenario, the training data are a blend of simulated and real robot data, which are tested on a real robot. Results Using simulation data to train the learning algorithms enhances the performance on the real robot where limited or no real data are available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-tosimulated data were 22% to 78%. For the Taurus II and the da Vinci, the model showed an accuracy of 97.5% and 93%, respectively, training only with simulation data. Conclusions The results indicate that simulation can be used to augment training data to enhance the performance of learned models in real scenarios. This shows potential for the future use of surgical data from the operating room in deployable surgical robots in remote areas.« less