skip to main content

Search for: All records

Award ID contains: 1849213

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bio-inspired Topographically Mediated Surfaces (TMSs) based on high aspect ratio nanostructures have recently been attracting significant attention due to their pronounced antimicrobial properties by mechanically disrupting cellular processes. However, scalability of such surfaces is often greatly limited, as most of them rely on micro/nanoscale fabrication techniques. In this report, a cost-effective, scalable, and versatile approach of utilizing diamond nanotechnology for producing TMSs, and using them for limiting the spread of emerging infectious diseases, is introduced. Specifically, diamond-based nanostructured coatings are synthesized in a single-step fabrication process with a densely packed, needle- or spike-like morphology. The antimicrobial proprieties of the diamond nanospike surface are qualitatively and quantitatively analyzed and compared to other surfaces including copper, silicon, and even other diamond surfaces without the nanostructuring. This surface is found to have superior biocidal activity, which is confirmed via scanning electron microscopy images showing definite and widespread destruction ofE. colicells on the diamond nanospike surface. Consistent antimicrobial behavior is also observed on a sample prepared seven years prior to testing date.

    Graphical Abstract

  2. Abstract

    When a water drop is placed onto a soft polymer network, a wetting ridge develops at the drop periphery. The height of this wetting ridge is typically governed by the drop surface tension balanced by elastic restoring forces of the polymer network. However, the situation is more complex when the network is swollen with fluid, because the fluid may separate from the network at the contact line. Here we study the fluid separation and network deformation at the contact line of a soft polydimethylsiloxane (PDMS) network, swollen with silicone oil. By controlling both the degrees of crosslinking and swelling, we find that more fluid separates from the network with increasing swelling. Above a certain swelling, network deformation decreases while fluid separation increases, demonstrating synergy between network deformation and fluid separation. When the PDMS network is swollen with a fluid having a negative spreading parameter, such as hexadecane, no fluid separation is observed. A simple balance of interfacial, elastic, and mixing energies can describe this fluid separation behavior. Our results reveal that a swelling fluid, commonly found in soft networks, plays a critical role in a wetting ridge.

  3. Abstract

    Robot-assisted healthcare could help alleviate the shortage of nursing staff in hospitals and is a potential solution to assist with safe patient handling and mobility. In an attempt to off-load some of the physically-demanding tasks and automate mundane duties of overburdened nurses, we have developed the Adaptive Robotic Nursing Assistant (ARNA), which is a custom-built omnidirectional mobile platform with a 6-DoF robotic manipulator and a force sensitive walking handlebar. In this paper, we present a robot-specific neuroadaptive controller (NAC) for ARNA’s mobile base that employs online learning to estimate the robot’s unknown dynamic model and nonlinearities. This control scheme relies on an inner-loop torque controller and features convergence with Lyapunov stability guarantees. The NAC forces the robot to emulate a mechanical system with prescribed admittance characteristics during patient walking exercises and bed moving tasks. The proposed admittance controller is implemented on a model of the robot in a Gazebo-ROS simulation environment, and its effectiveness is investigated in terms of online learning of robot dynamics as well as sensitivity to payload variations.

  4. Free, publicly-accessible full text available June 1, 2023
  5. Free, publicly-accessible full text available March 22, 2023
  6. Free, publicly-accessible full text available February 1, 2023
  7. Fluoroanthradithiophenes are well known organic semiconductors, where alkynyl substituents featuring silicon and germanium exhibit hole mobilities in excess of 5 cm 2 V −1 s −1 . A key feature to achieve these performance levels is the 2-dimensional brickwork packing of triethylsilyl and triethylgermyl side chains, which direct solid-state packing, increase molecular stability, and increase solution processability for cheap and large scale fabrication. We have recently reported side chains utilising carbon in place of the other group 14 atoms, resulting in less favourable 1-dimensional molecular packing. Here we present the synthesis of new derivatives which adopt 2-D brickwork packing without the use of silicon or germanium to determine substituent effects on charge carrier mobility.
    Free, publicly-accessible full text available January 24, 2023
  8. Free, publicly-accessible full text available January 24, 2023
  9. Free, publicly-accessible full text available January 1, 2023
  10. Free, publicly-accessible full text available January 1, 2023