skip to main content


Title: Extreme heat events heighten soil respiration
Abstract In the wake of climate change, extreme events such as heatwaves are considered to be key players in the terrestrial biosphere. In the past decades, the frequency and severity of heatwaves have risen substantially, and they are projected to continue to intensify in the future. One key question is therefore: how do changes in extreme heatwaves affect the carbon cycle? Although soil respiration (Rs) is the second largest contributor to the carbon cycle, the impacts of heatwaves on Rs have not been fully understood. Using a unique set of continuous high frequency in-situ measurements from our field site, we characterize the relationship between Rs and heatwaves. We further compare the Rs response to heatwaves across ten additional sites spanning the contiguous United States (CONUS). Applying a probabilistic framework, we conclude that during heatwaves Rs rates increase significantly, on average, by ~ 26% relative to that of non-heatwave conditions over the CONUS. Since previous in-situ observations have not measured the Rs response to heatwaves (e.g., rate, amount) at the high frequency that we present here, the terrestrial feedback to the carbon cycle may be underestimated without capturing these high frequency extreme heatwave events.  more » « less
Award ID(s):
1931363 1931335
NSF-PAR ID:
10284609
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heatwaves are expected to increase in frequency, intensity and duration due to climate change. For organisms like insects with discrete development, sensitivity may differ among life stages. Thermal sensitivity is of particular concern for species like bees that provide critical ecosystem services. Although social bees moderate nest temperatures through worker behaviour, solitary bees do not thermoregulate their nests, making immobile developing offspring especially vulnerable to such extreme events.

    We studied the effects of heatwaves on larval development in the solitary bee,Osmia lignaria, an important orchard pollinator and model species for solitary bee biology. We used a factorial design to assess the impacts of heatwave temperature and duration on larval mortality and development rate. Larvae were exposed to heatwaves under realistic diel temperature regimes, with daytime maxima of 31 or 37°C for 4 or 7 days at the beginning of development.

    Heatwave temperature strongly affected larval mortality. Exposure to 37°C heatwaves increased larval mortality by 130%, but the cooler 31°C heatwaves did not significantly impact mortality. Heatwave duration did not impact larval mortality.

    Larval development time also was affected by heatwave exposure. Compared with the no‐heatwave‐control, bees in the 31°C heatwave developed faster, and bees in the 37°C heatwave developed slower.

    Our study reveals the importance of stage‐specific effects of extreme events and suggests that the timing and maximum temperature of projected heatwaves may be more detrimental to populations than heatwave duration.

     
    more » « less
  2. Abstract The increasing frequency of heatwaves over East Asia (EA) is impacting agriculture, water management, and people’s livelihood. However, the effect of humidity on high-temperature events has not yet been fully explored. Using observations and future climate change projections conducted with the latest generation of Earth System models, we examine the mechanisms of dry and moist heatwaves over EA. In the dry heatwave region, anticyclonic circulation has been amplified after the onset of heatwaves under the influence of the convergence of anomalous wave activity flux over northern EA, resulting in surface warming via adiabatic processes. In contrast, the moist heatwaves are triggered by the locally generated anticyclonic anomalies, with the surface warming amplified by cloud and water vapor feedback. Model simulations from phase six of the Coupled Model Intercomparison Project projected display intensification of dry heatwaves and increased moist heatwave days in response to projected increases in greenhouse gas concentrations. 
    more » « less
  3. Abstract Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood. 
    more » « less
  4. Abstract

    As a consequence of ongoing climate change, heatwaves are predicted to increase in frequency, intensity, and duration in many regions. Such extreme events can shift organisms from thermal optima for physiology and behaviour, with the thermal stress hypothesis predicting reduced performance at temperatures where the maintenance of biological functions is energetically costly. Performance includes the ability to resist biotic stressors, including infectious diseases, with increased exposure to extreme temperatures having the potential to synergise with parasite infection.

    Climate change is a proposed threat to native bee pollinators, directly and through indirect effects on floral resources, but the thermal stress hypothesis, particularly pertaining to infectious disease resistance, has received limited attention. We exposed adultBombus impatiensbumblebee workers to simulated, ecologically relevant heatwave or control thermal regimes and assessed longevity, immunity, and resistance to concurrent or future parasite infections.

    We demonstrate that survival and induced antibacterial immunity are reduced following heatwaves. Supporting that heatwave exposure compromised immunity, the cost of immune activation was thermal regime dependent, with survival costs in control but not heatwave exposed bees. However, in the face of real infections, an inability to mount an optimal immune response will be detrimental, which was reflected by increased trypanosomatid parasite infections following heatwave exposure.

    These results demonstrate interactions between heatwave exposure and bumblebee performance, including immune and infection outcomes. Thus, the health of bumblebee pollinator populations may be affected through altered interactions with parasites and pathogens, in addition to other effects of extreme manifestations of climate change.

     
    more » « less
  5. null (Ed.)
    Extreme environmental fluctuations such as marine heatwaves (MHWs) can have devastating effects on ecosystem health and functioning through rapid population declines and destabilization of trophic interactions. However, recent studies have highlighted that population tolerance to MHWs is variable, with some populations even benefitting from MHWs. A number of factors can explain variation in responses between populations including their genetic variation, previous thermal experience and the cumulative heatwave intensity (°C d) of the heatwave itself. We disentangle the contributions of these factors on population mortality and post-heatwave growth rates by experimentally simulating heatwaves (7.5 or 9.2°C, for up to 9 days) for three genotypes of the Southern Ocean diatom Actinocyclus actinochilus . The effects of simulated heatwaves on mortality and population growth rates varied with genotype, thermal experience and the cumulative intensity of the heatwave itself. Firstly, hotter and longer heatwaves increased mortality and decreased post-heatwave growth rates relative to milder, shorter heatwaves. Secondly, growth above the thermal optimum before heatwaves exacerbated heatwave-associated negative effects, leading to increased mortality during heatwaves and slower growth after heatwaves. Thirdly, hotter and longer heatwaves resulted in more pronounced changes to thermal optima (T opt ) immediately following heatwaves. Finally, there is substantial intraspecific variation in post-heatwave growth rates. Our findings shed light on the potential of Southern Ocean diatoms to tolerate MHWs, which will increase both in frequency and in intensity under future climate change. 
    more » « less