Heatwaves are expected to increase in frequency, intensity and duration due to climate change. For organisms like insects with discrete development, sensitivity may differ among life stages. Thermal sensitivity is of particular concern for species like bees that provide critical ecosystem services. Although social bees moderate nest temperatures through worker behaviour, solitary bees do not thermoregulate their nests, making immobile developing offspring especially vulnerable to such extreme events. We studied the effects of heatwaves on larval development in the solitary bee, Heatwave temperature strongly affected larval mortality. Exposure to 37°C heatwaves increased larval mortality by 130%, but the cooler 31°C heatwaves did not significantly impact mortality. Heatwave duration did not impact larval mortality. Larval development time also was affected by heatwave exposure. Compared with the no‐heatwave‐control, bees in the 31°C heatwave developed faster, and bees in the 37°C heatwave developed slower. Our study reveals the importance of stage‐specific effects of extreme events and suggests that the timing and maximum temperature of projected heatwaves may be more detrimental to populations than heatwave duration.
- Award ID(s):
- 1655221
- NSF-PAR ID:
- 10248642
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Osmia lignaria , an important orchard pollinator and model species for solitary bee biology. We used a factorial design to assess the impacts of heatwave temperature and duration on larval mortality and development rate. Larvae were exposed to heatwaves under realistic diel temperature regimes, with daytime maxima of 31 or 37°C for 4 or 7 days at the beginning of development. -
Shallow coastal ecosystems are threatened by marine heatwaves, but few long-term records exist to quantify these heatwaves. Here, 40-year records of measured water temperature were constructed for a site in a system of shallow bays with documented heatwave impacts and a nearby ocean site; available gridded sea-surface temperature datasets in the region were also examined. Water temperatures at both sites increased significantly though bay temperatures were consistently 3-4°C hotter in summer and colder in winter and were more variable overall, differences not captured in high-resolution gridded sea-surface temperature datasets. There was considerable overlap in heatwave events at the coastal bay and ocean sites. Annual heatwave exposure was similar and significantly increased at both sites while annual heatwave intensity was significantly higher at the bay site owing to the high variance of the daily temperature anomaly there. Event frequency at both sites increased at a rate of about 1 event/decade. Future simulations indicate all heatwave metrics increase, as do days above 28°C, a heat stress threshold for seagrass. Ocean temperatures on the U.S. mid-Atlantic margin have rarely exceeded this threshold, while summer bay temperatures commonly do, allowing ocean exchange with coastal bays to provide thermal relief to bay ecosystems. This will have changed by 2100, creating a thermal environment that threatens seagrass communities in these systems. Documenting such change requires development of long-term water temperature records in more shallow coastal systems.
-
Abstract In the era of escalating climate change, understanding human impacts on marine heatwaves (MHWs) becomes essential. This study harnesses climate model historical and single forcing simulations to delve into the individual roles of anthropogenic greenhouse gases (GHGs) and aerosols in shaping the characteristics of global MHWs over the past several decades. The results suggest that GHG variations lead to longer-lasting, more frequent, and intense MHWs. In contrast, anthropogenic aerosols markedly curb the intensity and growth of MHWs. Further analysis of the sea surface temperature (SST) probability distribution reveals that anthropogenic GHGs and aerosols have opposing effects on the tails of the SST probability distribution, causing the tails to expand and contract, respectively. Climate extremes such as MHWs are accordingly promoted and reduced. Our study underscores the significant impacts of anthropogenic GHGs and aerosols on MHWs, which go far beyond the customary concept that these anthropogenic forcings modulate climate extremes by shifting global SST probabilities via modifying the mean-state SST.
-
Increasing ocean temperatures threaten coral reefs globally, but corals residing in habitats that experience high thermal variability are thought to be better adapted to survive climate-induced heat stress. Here, we used long-term ecological observations and in situ temperature data from Heron Island, southern Great Barrier Reef to investigate how temperature dynamics within various thermally variable vs. thermally stable reef habitats change during a marine heatwave and the resulting consequences for coral community survival. During the heatwave, thermally variable habitats experienced larger surges in daily mean and maxima temperatures compared to stable sites, including extreme hourly incursions up to 36.5 °C. The disproportionate increase in heat stress in variable habitats corresponded with greater subsequent declines in hard coral cover, including a three-times greater decline within the thermally variable Reef Flat (70%) and Deep Lagoon (83%) than within thermally stable habitats along sheltered and exposed areas of the reef slope (0.3–19%). Interestingly, the thermally variable Reef Crest experienced comparatively small declines (26%), avoiding the most severe tidal ponding and resultant heat stress likely due to proximity to the open ocean equating to lower seawater residence times, greater mixing, and/or increased flow. These results highlight that variable thermal regimes, and any acclimatization or adaptation to elevated temperatures that may lead to, do not necessarily equate to protection against bleaching and mortality during marine heatwaves. Instead, thermally stable habitats that have greater seawater exchange with the open ocean may offer the most protection to corals during the severe marine heatwaves that accompany a changing climate.more » « less
-
Coastal marine heatwaves have destructive and lasting impacts on foundational species 13 and are increasing in frequency, duration, and magnitude. High atmospheric temperatures are 14 often associated with marine heatwaves (MHW) which are defined as 5-days of water 15 temperatures above a seasonally varying 90th percentile threshold. In this study we consider the 16 prevalence of MHW propagation into surficial sediments to cause sediment heatwaves (SHW). 17 Within a shallow, subtidal seagrass meadow in Virginia, USA, sediment temperature was 18 measured at hourly intervals at a depth of 5 cm between June 2020-October 2022 at the meadow 19 edge and central meadow interior. The observed sediment temperature, along with a 29-year 20 record of water temperature and water level was used to develop a sediment temperature model 21 for each location. Modeled sediment temperatures were used to identify sediment heatwaves that 22 may thermally stress belowground seagrass. At both meadow locations, sediment heatwave 23 frequency increased at a rate twice that of MHWs in the average global open ocean, coinciding 24 with a 172% increase in the annual number of SHW days, from 11 to 30 days year-1 between 25 1994-2022. Sediment heatwaves at both meadow locations co-occurred with a MHW 79-81% of 26 the time, with nearly all SHWs having a zero day lag. The top 10% most extreme MHWs and 27 SHWs occurred between November and April when thermal stress to seagrass was unlikely. In 28 June 2015 a SHW co-occurred with an anomalously long duration MHW that was associated 29 with a 90% decline in seagrass from this system, suggesting that SHWs may have contributed to 30 the observed seagrass loss. These results document heatwave propagation across the pelagic-31 sediment interface which likely occur broadly in shallow systems with impacts to critical coastal 32 ecosystem processes and species dynamics.more » « less