- Award ID(s):
- 1939988
- NSF-PAR ID:
- 10384075
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 24
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 4431 to 4448
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Unprecedented heatwave-drought concurrences in the past two decades have been reported over inner East Asia. Tree-ring–based reconstructions of heatwaves and soil moisture for the past 260 years reveal an abrupt shift to hotter and drier climate over this region. Enhanced land-atmosphere coupling, associated with persistent soil moisture deficit, appears to intensify surface warming and anticyclonic circulation anomalies, fueling heatwaves that exacerbate soil drying. Our analysis demonstrates that the magnitude of the warm and dry anomalies compounding in the recent two decades is unprecedented over the quarter of a millennium, and this trend clearly exceeds the natural variability range. The “hockey stick”–like change warns that the warming and drying concurrence is potentially irreversible beyond a tipping point in the East Asian climate system.more » « less
-
Abstract Interannual fluctuations in average summertime temperatures across the western United States are captured by a leading empirical orthogonal function that explains over 50% of the total observed variance. In this paper, we explain the origins of this pattern of interannual temperature variability by examining soil moisture–temperature coupling that acts across seasons in observations and climate models. We find that a characteristic pattern of coupled temperature–soil moisture climate variability accounts for 34% of the total observed variance in summertime temperature across the region. This pattern is reproduced in state-of-the-art global climate models, where experiments that eliminate soil moisture variability reduce summertime average temperature variance by a factor of 3 on average. We use an idealized model of the coupled atmospheric boundary layer and underlying land surface to demonstrate that feedbacks between soil moisture, boundary layer relative humidity, and precipitation can explain the observed relations between springtime soil moisture and summertime temperature. Our results suggest that antecedent soil moisture conditions and subsequent land–atmosphere interactions play an important role in interannual summertime temperature variability in the western United States; soil moisture variations cause distal temperature anomalies and impart predictability at time scales longer than one season. Our results indicate that 40% of the observed warming trend across the western United States since 1981 has been driven by wintertime precipitation trends in the U.S. southwest.
Significance Statement Year-to-year fluctuations in summertime temperatures have a large impact on drought, wildfire, and extreme heat across the Western United States. We find strong evidence that soil moisture deficits in the preceding spring may be the primary driver of higher-than-average summer temperatures in this region. Our results suggest that memory in the water cycle may lead to greater predictability in the climate system from season to season and that trends in southwest precipitation have exerted a considerable influence on observed warming over the past 40 years.
-
Abstract Strengthened land‐atmosphere coupling in the northeastern United States (NEUS), accompanied by a positive soil moisture‐rainfall feedback, may lead to more drought. Coupling between the land and atmosphere emerges when low soil moisture values limit surface latent heat flux, or evapotranspiration, so that a majority of absorbed solar radiation is emitted from the surface as sensible heat. In this study, the Weather Research and Forecasting model was run with four prescribed soil moisture levels across 7 years to elucidate the strength of land‐atmosphere coupling under potential, future soil moisture states in the NEUS. Under drier conditions, land‐atmosphere coupling strengthens, and a positive soil moisture‐precipitation feedback develops in all years despite differences in the amount of moisture advected into the study domain. As snowpack decreases and evaporative demand increases, soil conditions may become drier in future summers over the NEUS, resulting in the more frequent development of drought.
-
Abstract During late June 2021, a record-breaking heatwave impacted western North America, with all-time high temperatures reported across Washington, Oregon, British Columbia, and Alberta. The heatwave was forced by a highly anomalous upper-level ridge, strong synoptic-scale subsidence, and downslope flow resulting in lower-tropospheric adiabatic warming. This study examines the impact of antecedent soil moisture on this extreme heat event. During the cool season of 2020/21, precipitation over the Pacific Northwest was above or near normal, followed by a dry spring that desiccated soils to 50%–75% of normal moisture content by early June. Low surface soil moisture affects the surface energy balance by altering the partitioning between sensible and latent heat fluxes, resulting in warmer temperatures. Using numerical model simulations of the heatwave, this study demonstrates that surface air temperatures were warmed by an average of 0.48°C as a result of dry soil moisture conditions, compared to a high-temperature anomaly of 10°–20°C during the event. Air temperatures over eastern Washington and southern British Columbia were most sensitive to soil moisture anomalies, with 0000 UTC temperature anomalies ranging from 1.2° to 2.2°C. Trajectory analysis indicated that rapid subsidence of elevated parcels prevented air parcels from being affected by surface heat fluxes over a prolonged period of time, resulting in a relatively small temperature sensitivity to soil moisture. Changes to soil moisture also altered regional pressure, low-level wind, and geopotential heights, as well as modified the marine air intrusion along the Pacific coast of Washington and Oregon. Significance Statement The record-breaking western North American heatwave of late June 2021 was preceded by below-normal soil moisture over the region. This study evaluates the role of soil moisture on the 2021 heatwave, demonstrating that the anomalous temperatures during this extreme event were not significantly increased by below-normal soil moisture.more » « less
-
Abstract The 2022 heatwave in China featured record‐shattering high temperatures, raising questions about its origin and possible link to global warming. Here we show that the maximum temperature anomalies over Central China reached 13.1°C in the summer of 2022, which is ∼4.2σ above the 1981–2010 mean with a return period of tens of thousands of years. Our results suggested that the persistent high‐pressure anomaly and associated extreme heatwave likely resulted mainly from internal variability, although anthropogenic warming has increased the probability of such extreme heatwaves. We also estimate that the 2022‐like heatwave becomes six to seven times more likely under persistent high‐pressure conditions when compared to stochastic circulation states. Due to a shift toward warmer mean temperatures and a flattening of the probability distribution function, such rare extreme heatwaves are projected to become much more common at a global warming level of 4°C, occurring once about every 8.5 years.