skip to main content

Title: The costs of Arctic infrastructure damages due to permafrost degradation
Abstract Climate change has adverse impacts on Arctic natural ecosystems and threatens northern communities by disrupting subsistence practices, limiting accessibility, and putting built infrastructure at risk. In this paper, we analyze spatial patterns of permafrost degradation and associated risks to built infrastructure due to loss of bearing capacity and thaw subsidence in permafrost regions of the Arctic. Using a subset of three Coupled Model Intercomparison Project 6 models under SSP245 and 585 scenarios we estimated changes in permafrost bearing capacity and ground subsidence between two reference decades: 2015–2024 and 2055–2064. Using publicly available infrastructure databases we identified roads, railways, airport runways, and buildings at risk of permafrost degradation and estimated country-specific costs associated with damage to infrastructure. The results show that under the SSP245 scenario 29% of roads, 23% of railroads, and 11% of buildings will be affected by permafrost degradation, costing $182 billion to the Arctic states by mid-century. Under the SSP585 scenario, 44% of roads, 34% of railroads, and 17% of buildings will be affected with estimated cost of $276 billion, with airport runways adding an additional $0.5 billion. Russia is expected to have the highest burden of costs, ranging from $115 to $169 billion depending on the scenario. Limiting global greenhouse gas emissions has the potential to significantly decrease the costs of projected damages in Arctic countries, especially in Russia. The approach presented in this study underscores the substantial impacts of climate change on infrastructure and can assist to develop adaptation and mitigation strategies in Arctic states.  more » « less
Award ID(s):
1836377 2127364 2020404 2019691 2022504 2022599
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The accelerating climatic changes and new infrastructure development across the Arctic require more robust risk and environmental assessment, but thus far there is no consistent record of human impact. We provide a first panarctic satellite-based record of expanding infrastructure and anthropogenic impacts along all permafrost affected coasts (100 km buffer, ≈6.2 Mio km 2 ), named the Sentinel-1/2 derived Arctic Coastal Human Impact (SACHI) dataset. The completeness and thematic content goes beyond traditional satellite based approaches as well as other publicly accessible data sources. Three classes are considered: linear transport infrastructure (roads and railways), buildings, and other impacted area. C-band synthetic aperture radar and multi-spectral information (2016–2020) is exploited within a machine learning framework (gradient boosting machines and deep learning) and combined for retrieval with 10 m nominal resolution. In total, an area of 1243 km 2 constitutes human-built infrastructure as of 2016–2020. Depending on region, SACHI contains 8%–48% more information (human presence) than in OpenStreetMap. 221 (78%) more settlements are identified than in a recently published dataset for this region. 47% is not covered in a global night-time light dataset from 2016. At least 15% (180 km 2 ) correspond to new or increased detectable human impact since 2000 according to a Landsat-based normalized difference vegetation index trend comparison within the analysis extent. Most of the expanded presence occurred in Russia, but also some in Canada and US. 31% and 5% of impacted area associated predominantly with oil/gas and mining industry respectively has appeared after 2000. 55% of the identified human impacted area will be shifting to above 0 ∘ C ground temperature at two meter depth by 2050 if current permafrost warming trends continue at the pace of the last two decades, highlighting the critical importance to better understand how much and where Arctic infrastructure may become threatened by permafrost thaw. 
    more » « less
  2. Rapid global warming is catalyzing widespread permafrost degradation in the Arctic, leading to destructive land-surface subsidence that destabilizes and deforms the ground. Consequently, human-built infrastructure constructed upon permafrost is currently at major risk of structural failure. Risk assessment frameworks that attempt to study this issue assume that precise information on the location and extent of infrastructure is known. However, complete, high-quality, uniform geospatial datasets of built infrastructure that are readily available for such scientific studies are lacking. While imagery-enabled mapping can fill this knowledge gap, the small size of individual structures and vast geographical extent of the Arctic necessitate large volumes of very high spatial resolution remote sensing imagery. Transforming this ‘big’ imagery data into ‘science-ready’ information demands highly automated image analysis pipelines driven by advanced computer vision algorithms. Despite this, previous fine resolution studies have been limited to manual digitization of features on locally confined scales. Therefore, this exploratory study serves as the first investigation into fully automated analysis of sub-meter spatial resolution satellite imagery for automated detection of Arctic built infrastructure. We tasked the U-Net, a deep learning-based semantic segmentation model, with classifying different infrastructure types (residential, commercial, public, and industrial buildings, as well as roads) from commercial satellite imagery of Utqiagvik and Prudhoe Bay, Alaska. We also conducted a systematic experiment to understand how image augmentation can impact model performance when labeled training data is limited. When optimal augmentation methods were applied, the U-Net achieved an average F1 score of 0.83. Overall, our experimental findings show that the U-Net-based workflow is a promising method for automated Arctic built infrastructure detection that, combined with existing optimized workflows, such as MAPLE, could be expanded to map a multitude of infrastructure types spanning the pan-Arctic.

    more » « less
  3. null (Ed.)
    Abstract. Infrastructure built on perennially frozen ice-richground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk offailure. For better assessing the risk of large-scale future damage to Arcticinfrastructure, improved strategies for model-based approaches are urgentlyneeded. We used the laterally coupled 1D heat conduction model CryoGrid3to simulate permafrost degradation affected by linear infrastructure. Wepresent a case study of a gravel road built on continuous permafrost (Daltonhighway, Alaska) and forced our model under historical and strong futurewarming conditions (following the RCP8.5 scenario). As expected, the presenceof a gravel road in the model leads to higher net heat flux entering theground compared to a reference run without infrastructure and thus a higherrate of thaw. Further, our results suggest that road failure is likely aconsequence of lateral destabilisation due to talik formation in the groundbeside the road rather than a direct consequence of a top-down thawing anddeepening of the active layer below the road centre. In line with previousstudies, we identify enhanced snow accumulation and ponding (both aconsequence of infrastructure presence) as key factors for increased soiltemperatures and road degradation. Using differing horizontal modelresolutions we show that it is possible to capture these key factors and theirimpact on thawing dynamics with a low number of lateral model units,underlining the potential of our model approach for use in pan-Arctic riskassessments. Our results suggest a general two-phase behaviour of permafrost degradation:an initial phase of slow and gradual thaw, followed by a strong increase inthawing rates after the exceedance of a critical ground warming. The timing ofthis transition and the magnitude of thaw rate acceleration differ stronglybetween undisturbed tundra and infrastructure-affected permafrost ground. Ourmodel results suggest that current model-based approaches which do notexplicitly take into account infrastructure in their designs are likely tostrongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linearinfrastructure, we infer results in line with outcomes from more complex 2Dand 3D models, but our model's computational efficiency allows us to accountfor long-term climate change impacts on infrastructure from permafrostdegradation. Our model simulations underline that it is crucial to considerclimate warming when planning and constructing infrastructure on permafrost asa transition from a stable to a highly unstable state can well occur withinthe service lifetime (about 30 years) of such a construction. Such atransition can even be triggered in the coming decade by climate change forinfrastructure built on high northern latitude continuous permafrost thatdisplays cold and relatively stable conditions today. 
    more » « less
  4. Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost. 
    more » « less
  5. Wildfires in permafrost areas, including smoldering fires (e.g., “zombie fires”), have increasingly become a concern in the Arctic and subarctic. Their detection is difficult and requires ground truthing. Local and Indigenous knowledge are becoming useful sources of information that could guide future research and wildfire management. This paper focuses on permafrost peatland fires in the Siberian subarctic taiga linked to local communities and their infrastructure. It presents the results of field studies in Evenki and old-settler communities of Tokma and Khanda in the Irkutsk region of Russia in conjunction with concurrent remote sensing data analysis. The study areas located in the discontinuous permafrost zone allow examination of the dynamics of wildfires in permafrost peatlands and adjacent forested areas. Interviews revealed an unusual prevalence and witness-observed characteristics of smoldering peatland fires over permafrost, such as longer than expected fire risk periods, impacts on community infrastructure, changes in migration of wild animals, and an increasing number of smoldering wildfires including overwintering “zombie fires” in the last five years. The analysis of concurrent satellite remote sensing data confirmed observations from communities, but demonstrated a limited capacity of satellite imagery to accurately capture changing wildfire activity in permafrost peatlands, which may have significant implications for global climate. 
    more » « less