skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cumulative impacts of a gravel road and climate change in an ice-wedge-polygon landscape, Prudhoe Bay, Alaska
Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost.  more » « less
Award ID(s):
1820883 1832238 1928237 1263854
PAR ID:
10354582
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Arctic Science
ISSN:
2368-7460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cumulative impact assessments (CIAs) for new Arctic oilfields have not adequately addressed the potential landscape impacts of climate change or the indirect impacts of infrastructure in areas with ice-rich permafrost (IRP) (e.g., Raynolds et al. 2020). The main goals of this paper are: (1) trace the history of remote sensing for assessing past cumulative impacts in the Prudhoe Bay Oilfield (PBO), Alaska; (2) discuss some promising new remote-sensing and modeling tools; and (3) point toward improved capability to predict future changes. We first define IRP and cumulative impacts (CIs) and distinguish direct impacts (footprint) of infrastructure from the indirect impacts that follow construction. Aerial photographs (U.S. Navy 1948–1949) provided images of PBO landscapes before development occurred. The oil industry initiated annual high-resolution aerial-photograph missions of the PBO in 1968. In the same year, the International Biological Program (IBP) Tundra Biome started geoecological investigations that used these images to map landforms, soils, and vegetation of the PBO (Walker et al. 1980). The maps were later adapted to GIS approaches in three highly impacted 25-km2 areas of the PBO, which included several years of changes to tundra areas adjacent to infrastructure (Walker et al. 1987). The National Research Council later updated these three landscape-scale maps to 2001 and contracted the oil companies and Quantum Spatial Inc. to produce a regional-scale historical analysis of the network of roads, pipelines and other forms of infrastructure in all the North Slope Oilfields (NRC 2003). The regional- and landscape-scale maps used for NRC analysis were updated again in 2010 when unexpected rapid expansion of ice-wedge thermokarst was detected (Raynolds et al. 2014, 2016). Up to this time, CIAs of the PBO relied on aerial photographs and maps produced by the oil industry. The spatial resolution of available satellite-based remote-sensing data was insufficient to discern the details of periglacial landforms (e.g., ice-wedge polygons and nonsorted circles) or of roads, pipelines, or changes to land surfaces adjacent to infrastructure. Industry-sponsored studies that used remote-sensing products included studies of oil-pipeline spills, reserve-pits leaks (e.g., Jorgenson et al. 1995), off-road vehicles trails, and recovery following removal of gravel pads. Highlighted studies for this talk include a new NSF project that is part of the NSF Navigating the New Arctic initiative that is using integrated ground-based studies, advanced remote-sensing tools, and improved modeling approaches to examine climate- and infrastructure-related changes (Walker et al. 2022, Bergstedt 2022). Other projects that use PBO datasets for calibration, include an analysis of long-term impacts from a catastrophic flood (Shur et al. 2016, Zwieback et al. 2021) and studies that are using massive amounts of high-resolution imagery and pattern-recognition tools to detect and map ice-wedge polygons, water bodies, and infrastructure across the circumpolar Arctic (Bartsch et al. 2020; Witherrana et al. 2021). These tools combined with improved modeling approaches that bridge the gap between regional and engineering scales (e.g., Deimling et al. 2021) promise to greatly improve our ability to predict and monitor future infrastructure and landscape changes in areas with IRP. 
    more » « less
  2. Long-term permafrost observatories are needed to document and monitor rapid changes to ice-rich permafrost systems (IRPS) in a variety of geological, climatic, and infrastructure settings. As part of the US National Science Foundation’s Navigating the New Arctic (NNA) Program, a new observatory was established near the Deadhorse Airport in the eastern part of the Prudhoe Bay Oilfield (PBO) in 2020–23. The NNA-IRPS project has three main research themes: (1) evolution of and degradation of ground ice within the major surficial-geology units; (2) rapid changes in permafrost, landforms, and vegetation due to infrastructure and climate change; and (3) ecological landscapes associated with the calcareous fluvial deposits of the Central Arctic Coastal Plain. 
    more » « less
  3. We studied processes of ice-wedge degradation and stabilization at three sites adjacent to road infrastructure in the Prudhoe Bay Oilfield, Alaska, USA. We examined climatic, environmental, and subsurface conditions and evaluated vulnerability of ice wedges to thermokarst in undisturbed and road-affected areas. Vulnerability of ice wedges strongly depends on the structure and thickness of soil layers above ice wedges, including the active, transient, and intermediate layers. In comparison with the undisturbed area, sites adjacent to the roads had smaller average thicknesses of the protective intermediate layer (4 cm vs. 9 cm), and this layer was absent above almost 60% of ice wedges (vs. ∼45% in undisturbed areas). Despite the strong influence of infrastructure, ice-wedge degradation is a reversible process. Deepening of troughs during ice-wedge degradation leads to a substantial increase in mean annual ground temperatures but not in thaw depths. Thus, stabilization of ice wedges in the areas of cold continuous permafrost can occur despite accumulation of snow and water in the troughs. Although thermokarst is usually more severe in flooded areas, higher plant productivity, more litter, and mineral material (including road dust) accumulating in the troughs contribute to formation of the intermediate layer, which protects ice wedges from further melting. 
    more » « less
  4. Abstract The 2015 spring flood of the Sagavanirktok River inundated large swaths of tundra as well as infrastructure near Prudhoe Bay, Alaska. Its lasting impact on permafrost, vegetation, and hydrology is unknown but compels attention in light of changing Arctic flood regimes. We combined InSAR and optical satellite observations to quantify subdecadal permafrost terrain changes and identify their controls. While the flood locally induced quasi‐instantaneous ice‐wedge melt, much larger areas were characterized by subtle, spatially variable post‐flood changes. Surface deformation from 2015 to 2019 estimated from ALOS‐2 and Sentinel‐1 InSAR varied substantially within and across terrain units, with greater subsidence on average in flooded locations. Subsidence exceeding 5 cm was locally observed in inundated ice‐rich units and also in inactive floodplains. Overall, subsidence increased with deposit age and thus ground ice content, but many flooded ice‐rich units remained stable, indicating variable drivers of deformation. On average, subsiding ice‐rich locations showed increases in observed greenness and wetness. Conversely, many ice‐poor floodplains greened without deforming. Ice wedge degradation in flooded locations with elevated subsidence was mostly of limited intensity, and the observed subsidence largely stopped within 2 years. Based on remote sensing and limited field observations, we propose that the disparate subdecadal changes were influenced by spatially variable drivers (e.g., sediment deposition, organic layer), controls (ground ice and its degree of protection), and feedback processes. Remote sensing helps quantify the heterogeneous interactions between permafrost, vegetation, and hydrology across permafrost‐affected fluvial landscapes. Interdisciplinary monitoring is needed to improve predictions of landscape dynamics and to constrain sediment, nutrient, and carbon budgets. 
    more » « less
  5. Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play—for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines—have received less attention, preventing assessments of these processes’ impacts compared to and combined with coastal erosion. Alaska’s Arctic Coastal Plain (ACP) is ideal for such assessments because of the high-density observations of topography, coastal retreat rates, and permafrost characteristics, and importance to Indigenous communities and oilfield infrastructure. Here, we produce 21st-century projections of Arctic shoreline position that include erosion, permafrost subsidence, and sea-level rise. Focusing on the ACP, we merge 5 m topography, satellite-derived coastal lake depth estimates, and empirical assessments of land subsidence due to permafrost thaw with projections of coastal erosion and sea-level rise for medium and high emissions scenarios from the Intergovernmental Panel on Climate Change’s AR6 Report. We find that by 2100, erosion and inundation will together transform the ACP, leading to 6-8x more land loss than coastal erosion alone and disturbing 8-11x more organic carbon. Without mitigating measures, by 2100, coastal change could damage 40 to 65% of infrastructure in present-day ACP coastal villages and 10 to 20% of oilfield infrastructure. Our findings highlight the risks that compounding climate hazards pose to coastal communities and underscore the need for adaptive planning for Arctic coastlines in the 21st century. 
    more » « less