skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights from Engineering a Community-Family Partnership Project
The objective of this three-year National Science Foundation’s Innovative Technology Experiences for Students and Teachers (NSF-ITEST) project is to develop, implement, and refine a program for integrating engineering design practices with an emphasis on emerging technologies (i.e., making, DIY electronics) into home environments of families with a child in grade 3-6 from under-resourced communities. This project has two components. Each family (1) defines a home- or community-based problem and creates a prototype to improve the lives of self or others; and (2) engages in low-cost engineering design kits in their home environments. This paper presents findings from two years of interview data, as well video data collected in project sessions and home environments from 21 families. Results are presented as highlights of finding from on-going analyses to address three research aims.  more » « less
Award ID(s):
1759314
PAR ID:
10284806
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Research on interactions between caregivers and children have long been reported in science museum experiences. However, the interactions between caregivers and children in home environments are rarely investigated. By comparison, research on the experience of the engineering design challenge activities in a family context is even less. This case study aimed to examine interactions of two families in their home as they engaged with engineering design challenge kits that have the potential to support children’s foundational understanding of STEM concepts. Using social-cultural constructivism as a lens, about 370 minutes of video data was analyzed. Data coding revealed three types of interactions that facilitated children’s understanding of STEM concepts: teaching, build up, and synthesized moments. These three moments were interdependent but included different emphasis of caregivers’ and children’s engagement. Although there is a limitation of this study to generalize the findings, our results contribute to understand how caregivers and children play with the materials, tools, and their ideas in their home environments and how caregivers used different facilitation approaches without any training prior to engaging with the engineering kits. 
    more » « less
  2. Research on interactions between caregivers and children have long been reported in science museum experiences. However, the interactions between caregivers and children in home environments are rarely investigated. By comparison, research on the experience of the engineering design challenge activities in a family context is even less. This case study aimed to examine interactions of two families in their home as they engaged with engineering design challenge kits that have the potential to support children’s foundational understanding of STEM concepts. Using social-cultural constructivism as a lens, about 370 minutes of video data was analyzed. Data coding revealed three types of interactions that facilitated children’s understanding of STEM concepts: teaching, build up, and synthesized moments. These three moments were interdependent but included different emphasis of caregivers’ and children’s engagement. Although there is a limitation of this study to generalize the findings, our results contribute to understand how caregivers and children play with the materials, tools, and their ideas in their home environments and how caregivers used different facilitation approaches without any training prior to engaging with the engineering kits. 
    more » « less
  3. We began this project with three goals: (1) engage families in engineering activities, (2) increase the awareness of kids and caregivers as to what engineering is, and (3) increase children’ interest in engineering. We focused on caregivers and home environments because of the important role that at-home experiences with STEM play in triggering interest for many individuals who enter STEM professions. We created and distributed four different kits to families interested in engaging in STEM activities at home. Each kit included a challenge around engineering-related content (e.g., circuits, construction) and contained activity instructions (child) and a facilitation guide (caregivers). However, few instructions were given to caregivers about the expectations of their role while engaging with their children. This paper reports on the findings from family engagement in the Watercolor Bot kit. We sought to explore the roles enacted and behaviors utilized by caregivers as they supported their children during the activity. Our findings add to the conversation about how to define and conceptualize caregiver roles and how the home context/setting influences the types of supports caregivers provide. In contrast to emerging work on caregiver support, we argue that it may be more fruitful to think about the types of support (physical, verbal, content, and managerial) offered rather than defining specific roles (e.g., collaborator, project manager, etc.). We provide implications for designing kits and activities to include specific support for caregivers beyond simply providing project-specific instructions that address caregivers’ needs. 
    more » « less
  4. null (Ed.)
    This study presents a video-based case study of families who used discussion prompts in the at-home engineering kits. We examine different roles that caregivers took on during the implementation of the prompts to organize families’ engineering learning activities. Narrative accounts and transcriptions were analyzed to investigate the different roles that caregivers took. Three roles emerged: caregivers as monitor; caregivers as mentor; caregivers as partner. We further coded families’ talks to investigate how three different caregivers’ roles influenced families’ engineering practices and caregiver-child talk types. Preliminary findings illustrate how three caregivers’ roles enabled and constrained different types of engineering practices and caregiver-child talk types. Findings contribute to future considerations in designing discussion prompts for at-home engineering kits. 
    more » « less
  5. Child-robot interactions in educational, developmental, and health domains are widely explored, but little is known about how families perceive the presence of a social robot in their home environment and its participation in day-to-day activities. To close this gap, we conducted a participatory design (PD) study with six families, with children aged 10--12, to examine how families perceive in-home social robots participating in shared activities. Our analysis identified three main themes: (1) the robot can have a range of roles in the home as a companion or as an assistant; (2) family members have different preferences for how they would like to interact with the robot in group or personal interactions; and (3) families have privacy, confidentiality, and ethical concerns regarding a social robot's presence in the home. Based on these themes and existing literature, we provide guidelines for the future interaction design of in-home social robots for children. 
    more » « less