skip to main content


Title: Optimal adaptive inspection and maintenance for redundant systems
Optimal exploration of engineering systems can be guided by the principle of Value of Information (VoI), which accounts for the topological important of components, their reliability and the management costs. For series systems, in most cases higher inspection priority should be given to unreliable components. For redundant systems such as parallel systems, analysis of one-shot decision problems shows that higher inspection priority should be given to more reliable components. This paper investigates the optimal exploration of redundant systems in long-term decision making with sequential inspection and repairing. When the expected, cumulated, discounted cost is considered, it may become more efficient to give higher inspection priority to less reliable components, in order to preserve system redundancy. To investigate this problem, we develop a Partially Observable Markov Decision Process (POMDP) framework for sequential inspection and maintenance of redundant systems, where the VoI analysis is embedded in the optimal selection of exploratory actions. We investigate the use of alternative approximate POMDP solvers for parallel and more general systems, compare their computation complexities and performance, and show how the inspection priorities depend on the economic discount factor, the degradation rate, the inspection precision, and the repair cost.  more » « less
Award ID(s):
1653716
NSF-PAR ID:
10284837
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
Volume:
235
Issue:
4
ISSN:
1748-006X
Page Range / eLocation ID:
568 to 579
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We assess the Value of Information (VoI) for inspecting components in systems managed by multiple agents, using game theory and Nash equilibrium analysis. We focus on binary systems made up by binary components which can be either intact or damaged. Agents taking maintenance actions are responsible for the repair costs of their own components, and the penalty for system failure is shared among all agents. The precision of inspection is also considered, and we identify the prior and posterior Nash equilibrium with perfect or imperfect inspections. The VoI is assessed for the individual agents as well as for the whole set of agents, and the analysis consider series, parallel and general systems. A negative VoI can trigger the phenomenon of Information Avoidance (IA), where rational agents prefer not to collect free information. We discuss whether it is possible that the VoI is negative for one or for all agents, for the agents with inspected or uninspected components, and for the total sum of VoIs. 
    more » « less
  2. Many infrastructure systems can be modeled as networks of components with binary states (intact, damaged). Information about components’ conditions is crucial for the maintenance process of the system. However, it is often impossible to collect information of all components due to budget constraints. Several metrics have been developed to assess the importance of the components in relation to maintenance actions: an important component is one that should receive high maintenance priority. Instead, in this paper we focus on the priority to be assigned for component inspections and information collection. We investigate metrics based on system level (global) and component level (local) decision making after inspection for networks with different topology, and compare these results with traditional ones. We then discuss the computational challenges of these metrics and provide possible approximation approaches. 
    more » « less
  3. In this work, we propose a trajectory generation method for robotic systems with contact force constraint based on optimal control and reachability analysis. Normally, the dynamics and constraints of the contact-constrained robot are nonlinear and coupled to each other. Instead of linearizing the model and constraints, we directly solve the optimal control problem to obtain the feasible state trajectory and the control input of the system. A tractable optimal control problem is formulated which is addressed by dual approaches, which are sampling-based dynamic programming and rigorous reachability analysis. The sampling-based method and Partially Observable Markov Decision Process (POMDP) are used to break down the end-to-end trajectory generation problem via sample-wise optimization in terms of given conditions. The result generates sequential pairs of subregions to be passed to reach the final goal. The reachability analysis ensures that we will find at least one trajectory starting from a given initial state and going through a sequence of subregions. The distinctive contributions of our method are to enable handling the intricate contact constraint coupled with system’s dynamics due to the reduction of computational complexity of the algorithm. We validate our method using extensive numerical simulations with a legged robot. 
    more » « less
  4. Abstract To be responsive to dynamically changing real-world environments, an intelligent agent needs to perform complex sequential decision-making tasks that are often guided by commonsense knowledge. The previous work on this line of research led to the framework called interleaved commonsense reasoning and probabilistic planning (i corpp ), which used P-log for representing commmonsense knowledge and Markov Decision Processes (MDPs) or Partially Observable MDPs (POMDPs) for planning under uncertainty. A main limitation of i corpp is that its implementation requires non-trivial engineering efforts to bridge the commonsense reasoning and probabilistic planning formalisms. In this paper, we present a unified framework to integrate i corpp ’s reasoning and planning components. In particular, we extend probabilistic action language pBC + to express utility, belief states, and observation as in POMDP models. Inheriting the advantages of action languages, the new action language provides an elaboration tolerant representation of POMDP that reflects commonsense knowledge. The idea led to the design of the system pbcplus2pomdp , which compiles a pBC + action description into a POMDP model that can be directly processed by off-the-shelf POMDP solvers to compute an optimal policy of the pBC + action description. Our experiments show that it retains the advantages of i corpp while avoiding the manual efforts in bridging the commonsense reasoner and the probabilistic planner. 
    more » « less
  5. Computing strongly connected components (SCC) is among the most fundamental problems in graph analytics. Given the large size of today's real-world graphs, parallel SCC implementation is increasingly important. SCC is challenging in the parallel setting and is particularly hard on large-diameter graphs. Many existing parallel SCC implementations can be even slower than Tarjan's sequential algorithm on large-diameter graphs.

    To tackle this challenge, we propose an efficient parallel SCC implementation using a new parallel reachability approach. Our solution is based on a novel idea referred to as vertical granularity control (VGC). It breaks the synchronization barriers to increase parallelism and hide scheduling overhead. To use VGC in our SCC algorithm, we also design an efficient data structure called the parallel hash bag. It uses parallel dynamic resizing to avoid redundant work in maintaining frontiers (vertices processed in a round).

    We implement the parallel SCC algorithm by Blelloch et al. (J. ACM, 2020) using our new parallel reachability approach. We compare our implementation to the state-of-the-art systems, including GBBS, iSpan, Multi-step, and our highly optimized Tarjan's (sequential) algorithm, on 18 graphs, including social, web, k-NN, and lattice graphs. On a machine with 96 cores, our implementation is the fastest on 16 out of 18 graphs. On average (geometric means) over all graphs, our SCC is 6.0× faster than the best previous parallel code (GBBS), 12.8× faster than Tarjan's sequential algorithms, and 2.7× faster than the best existing implementation on each graph.

    We believe that our techniques are of independent interest. We also apply our parallel hash bag and VGC scheme to other graph problems, including connectivity and least-element lists (LE-lists). Our implementations improve the performance of the state-of-the-art parallel implementations for these two problems.

     
    more » « less