skip to main content


Title: A Synchronous Spin-Exchange Optically Pumped NMR-Gyroscope
Inertial navigation systems generally consist of timing, acceleration, and orientation measurement units. Although much progress has been made towards developing primary timing sources such as atomic clocks, acceleration and orientation measurement units often require calibration. Nuclear Magnetic Resonance (NMR) gyroscopes, which rely on continuous measurement of the simultaneous Larmor precession of two co-located polarized noble gases, can be configured to have scale factors that depend to first order only on fundamental constants. The noble gases are polarized by spin-exchange collisions with co-located optically pumped alkali-metal atoms. The alkali-metal atoms are also used to detect the phase of precession of the polarized noble gas nuclei. Here we present a version of an NMR gyroscope designed to suppress systematic errors from the alkali-metal atoms. We demonstrate rotation rate angle random walk (ARW) sensitivity of 16μHz/Hz and bias instability of ∼800 nHz.  more » « less
Award ID(s):
1912543
NSF-PAR ID:
10284925
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
10
Issue:
20
ISSN:
2076-3417
Page Range / eLocation ID:
7099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines the principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging, however, because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometre to sub-nanometre length scales. This challenge is overcome here by developing an open-source virtual instrument that uses graphical processing units (GPUs) to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. This computational framework – calledCyRSoXS(https://github.com/usnistgov/cyrsoxs) – is designed to maximize GPU performance, including algorithms that minimize both communication and memory footprints. The accuracy and robustness of the approach are demonstrated by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating an acceleration of over three orders of magnitude relative to the current state-of-the-art P-RSoXS simulation software. Such fast simulations open up a variety of applications that were previously computationally unfeasible, including pattern fitting, co-simulation with the physical instrument foroperandoanalytics, data exploration and decision support, data creation and integration into machine learning workflows, and utilization in multi-modal data assimilation approaches. Finally, the complexity of the computational framework is abstracted away from the end user by exposingCyRSoXSto Python usingPybind. This eliminates input/output requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss) that can include parametric morphology generation, simulation result reduction, comparison with experiment and data fitting approaches.

     
    more » « less
  2. Two-dimensional (2D) substrates decorated with metal nanoparticles offer new opportunities to achieve high-performance catalytic behavior. However, little is known on how the substrates control the nucleation and growth processes of the nanoparticles. This paper presents the visualization of dynamic nucleation and growth processes of gold nanoparticles on ultrathin MoS 2 nanoflakes by in situ liquid-cell transmission electron microscopy (TEM). The galvanic displacement resulting in Au nuclei formation on MoS 2 was observed in real time inside the liquid cell. We found that the growth mechanism of Au particles on pristine MoS 2 is in between diffusion-limited and reaction-limited, possibly due to the presence of electrochemical Ostwald ripening. A larger size distribution and more orientation variation is observed for the Au particles along the MoS 2 edge than on the interior. Differing from pristine MoS 2 , sulfur vacancies on MoS 2 induce Au particle diffusion and coalescence during the growth process. Density functional theory (DFT) calculations show that the size difference is because the exposed molybdenum atoms at the edge with dangling bonds can strongly interact with Au atoms, whereas sulfur atoms on the MoS 2 interior have no dangling bonds and weakly interact with gold atoms. In addition, S vacancies on MoS 2 generate strong nucleation centers that can promote diffusion and coalescence of Au nanoparticles. The present work provides key insights into the role of 2D materials in controlling the size and orientation of noble metal nanoparticles vital to the design of next generation catalysts. 
    more » « less
  3. Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS) will implement the scheme of Golub & Lamoreaux [Phys. Rep., 237, 1 (1994)]. The unique properties of combining polarized ultracold neutrons, polarized 3 He, and superfluid 4 He will be exploited to provide a sensitivity to ∼ 10 −28   e  · cm. Our cryogenic apparatus will deploy two small (3 L) measurement cells with a high density of ultracold neutrons produced and spin analyzed in situ. The electric field strength, precession time, magnetic shielding, and detected UCN number will all be enhanced compared to previous room temperature Ramsey measurements. Our 3 He co-magnetometer offers unique control of systematic effects, in particular the Bloch-Siegert induced false EDM. Furthermore, there will be two distinct measurement modes: free precession and dressed spin. This will provide an important self-check of our results. Following five years of “critical component demonstration,” our collaboration transitioned to a “large scale integration” phase in 2018. An overview of our measurement techniques, experimental design, and brief updates are described in these proceedings. 
    more » « less
  4. We present wideband (1 − 6.5 GHz) polarimetric observations, obtained with the Karl G. Jansky Very Large Array, of the merging galaxy cluster MACS J0717.5+3745, which hosts one of the most complex known radio relic and halo systems. We used both rotation measure synthesis and QU -fitting to find a reasonable agreement of the results obtained with these methods, particularly when the Faraday distribution is simple and the depolarization is mild. The relic is highly polarized over its entire length (850 kpc), reaching a fractional polarization > 30% in some regions. We also observe a strong wavelength-dependent depolarization for some regions of the relic. The northern part of the relic shows a complex Faraday distribution, suggesting that this region is located in or behind the intracluster medium (ICM). Conversely, the southern part of the relic shows a rotation measure very close to the Galactic foreground, with a rather low Faraday dispersion, indicating very little magnetoionic material intervening along the line of sight. Based on a spatially resolved polarization analysis, we find that the scatter of Faraday depths is correlated with the depolarization, indicating that the tangled magnetic field in the ICM causes the depolarization. We conclude that the ICM magnetic field could be highly turbulent. At the position of a well known narrow-angle-tailed galaxy (NAT), we find evidence of two components that are clearly separated in the Faraday space. The high Faraday dispersion component seems to be associated with the NAT, suggesting the NAT is embedded in the ICM while the southern part of the relic lies in front of it. If true, this implies that the relic and this radio galaxy are not necessarily physically connected and, thus, the relic may, in fact, not be powered by the shock re-acceleration of fossil electrons from the NAT. The magnetic field orientation follows the relic structure indicating a well-ordered magnetic field. We also detected polarized emission in the halo region; however, the absence of significant Faraday rotation and a low value of Faraday dispersion suggests the polarized emission that was previously considered as the part of the halo does, in fact, originate from the shock(s). 
    more » « less
  5. Abstract

    The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (1) affords the first examples of dianionic 10‐membered bora‐crown ethers (25), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4, which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of25. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.

     
    more » « less