skip to main content

Title: Physician Stress During Electronic Health Record Inbox Work: In Situ Measurement With Wearable Sensors
Background Increased work through electronic health record (EHR) messaging is frequently cited as a factor of physician burnout. However, studies to date have relied on anecdotal or self-reported measures, which limit the ability to match EHR use patterns with continuous stress patterns throughout the day. Objective The aim of this study is to collect EHR use and physiologic stress data through unobtrusive means that provide objective and continuous measures, cluster distinct patterns of EHR inbox work, identify physicians’ daily physiologic stress patterns, and evaluate the association between EHR inbox work patterns and physician physiologic stress. Methods Physicians were recruited from 5 medical centers. Participants (N=47) were given wrist-worn devices (Garmin Vivosmart 3) with heart rate sensors to wear for 7 days. The devices measured physiological stress throughout the day based on heart rate variability (HRV). Perceived stress was also measured with self-reports through experience sampling and a one-time survey. From the EHR system logs, the time attributed to different activities was quantified. By using a clustering algorithm, distinct inbox work patterns were identified and their associated stress measures were compared. The effects of EHR use on physician stress were examined using a generalized linear mixed effects model. Results Physicians spent more » an average of 1.08 hours doing EHR inbox work out of an average total EHR time of 3.5 hours. Patient messages accounted for most of the inbox work time (mean 37%, SD 11%). A total of 3 patterns of inbox work emerged: inbox work mostly outside work hours, inbox work mostly during work hours, and inbox work extending after hours that were mostly contiguous to work hours. Across these 3 groups, physiologic stress patterns showed 3 periods in which stress increased: in the first hour of work, early in the afternoon, and in the evening. Physicians in group 1 had the longest average stress duration during work hours (80 out of 243 min of valid HRV data; P=.02), as measured by physiological sensors. Inbox work duration, the rate of EHR window switching (moving from one screen to another), the proportion of inbox work done outside of work hours, inbox work batching, and the day of the week were each independently associated with daily stress duration (marginal R2=15%). Individual-level random effects were significant and explained most of the variation in stress (conditional R2=98%). Conclusions This study is among the first to demonstrate associations between electronic inbox work and physiological stress. We identified 3 potentially modifiable factors associated with stress: EHR window switching, inbox work duration, and inbox work outside work hours. Organizations seeking to reduce physician stress may consider system-based changes to reduce EHR window switching or inbox work duration or the incorporation of inbox management time into work hours. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1704889
Publication Date:
NSF-PAR ID:
10285104
Journal Name:
JMIR Medical Informatics
Volume:
9
Issue:
4
Page Range or eLocation-ID:
e24014
ISSN:
2291-9694
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives Electronic health record systems are increasingly used to send messages to physicians, but research on physicians’ inbox use patterns is limited. This study’s aims were to (1) quantify the time primary care physicians (PCPs) spend managing inboxes; (2) describe daily patterns of inbox use; (3) investigate which types of messages consume the most time; and (4) identify factors associated with inbox work duration. Materials and Methods We analyzed 1 month of electronic inbox data for 1275 PCPs in a large medical group and linked these data with physicians’ demographic data. Results PCPs spent an average of 52 minutesmore »on inbox management on workdays, including 19 minutes (37%) outside work hours. Temporal patterns of electronic inbox use differed from other EHR functions such as charting. Patient-initiated messages (28%) and results (29%) accounted for the most inbox work time. PCPs with higher inbox work duration were more likely to be female (P < .001), have more patient encounters (P < .001), have older patients (P < .001), spend proportionally more time on patient messages (P < .001), and spend more time per message (P < .001). Compared with PCPs with the lowest duration of time on inbox work, PCPs with the highest duration had more message views per workday (200 vs 109; P < .001) and spent more time on the inbox outside work hours (30 minutes vs 9.7 minutes; P < .001). Conclusions Electronic inbox work by PCPs requires roughly an hour per workday, much of which occurs outside scheduled work hours. Interventions to assist PCPs in handling patient-initiated messages and results may help alleviate inbox workload.« less
  2. Background Telemedicine as a mode of health care work has grown dramatically during the COVID-19 pandemic; the impact of this transition on clinicians’ after-hours electronic health record (EHR)–based clinical and administrative work is unclear. Objective This study assesses the impact of the transition to telemedicine during the COVID-19 pandemic on physicians’ EHR-based after-hours workload (ie, “work outside work”) at a large academic medical center in New York City. Methods We conducted an EHR-based retrospective cohort study of ambulatory care physicians providing telemedicine services before the pandemic, during the acute pandemic, and after the acute pandemic, relating EHR-based after-hours work tomore »telemedicine intensity (ie, percentage of care provided via telemedicine) and clinical load (ie, patient load per provider). Results A total of 2129 physicians were included in this study. During the acute pandemic, the volume of care provided via telemedicine significantly increased for all physicians, whereas patient volume decreased. When normalized by clinical load (ie, average appointments per day by average clinical days per week), telemedicine intensity was positively associated with work outside work across time periods. This association was strongest after the acute pandemic. Conclusions Taking physicians’ clinical load into account, physicians who devoted a higher proportion of their clinical time to telemedicine throughout various stages of the pandemic engaged in higher levels of EHR-based after-hours work compared to those who used telemedicine less intensively. This suggests that telemedicine, as currently delivered, may be less efficient than in-person–based care and may increase the after-hours work burden of physicians.« less
  3. Abstract Quantifying how whole organisms respond to challenges in the external and internal environment (“stressors”) is difficult. To date, physiological ecologists have mostly used measures of glucocorticoids (GCs) to assess the impact of stressors on animals. This is of course too simplistic as Hans Seyle himself characterized the response of organisms to “noxious stimuli” using multiple physiological responses. Possible solutions include increasing the number of biomarkers to more accurately characterize the “stress state” of animal or just measuring different biomarkers to more accurately characterize the degree of acute or chronic stressors an animal is experiencing. We focus on the lattermore »and discuss how heart rate (HR) and heart rate variability (HRV) may be better predictors of the degree of activation of the sympathetic–adrenal–medullary system and complement or even replace measures of GCs as indicators of animal health, welfare, fitness, or their level of exposure to stressors. The miniaturization of biological sensor technology (“bio-sensors” or “bio-loggers”) presents an opportunity to reassess measures of stress state and develop new approaches. We describe some modern approaches to gathering these HR and HRV data in free-living animals with the aim that heart dynamics will be more integrated with measures of GCs as bio-markers of stress state and predictors of fitness in free-living animals.« less
  4. Stephanidis C., Antona M. (Ed.)
    The objective of this study is to develop and use a virtual reality game as a tool to assess the effects of realistic stress on the behavioral and physiological responses of participants. The game is based on a popular Steam game called Keep Talking Nobody Explodes, where the players collaborate to defuse a bomb. Varying levels of difficulties in solving a puzzle and time pressures will result in different stress levels that can be measured in terms of errors, response times, and other physiological measurements. The game was developed using 3D programming tools including Blender and a virtual reality developmentmore »kit (VRTK). To measure response times accurately, we added LSL (Lab Stream Layer) Markers to collect and synchronize physiological signals, behavioral data, and the timing of game events. We recorded Electrocardiogram (ECG) data during gameplay to assess heart rate and heart-rate variability (HRV) that have been shown as reliable indicators of stress. Our empirical results showed that heart rate increased significantly while HRV reduced significantly when the participants under high stress, which are consistent with the prior mainstream stress research. This VR game framework is publicly available in GitHub and allows researchers to measure and synchronize other physiological signals such as electroencephalogram, electromyogram, and pupillometry.« less
  5. Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective Wemore »seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performance measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance.« less