skip to main content


Title: Robust Bayesian Classification Using An Optimistic Score Ratio
We build a Bayesian contextual classification model using an optimistic score ratio for robust binary classification when there is limited information on the class-conditional, or contextual, distribution. The optimistic score searches for the distribution that is most plausible to explain the observed outcomes in the testing sample among all distributions belonging to the contextual ambiguity set which is prescribed using a limited structural constraint on the mean vector and the covariance matrix of the underlying contextual distribution. We show that the Bayesian classifier using the optimistic score ratio is conceptually attractive, delivers solid statistical guarantees, and is computationally tractable. We showcase the power of the proposed optimistic score ratio classifier on both synthetic and empirical data.  more » « less
Award ID(s):
1915967
PAR ID:
10285218
Author(s) / Creator(s):
; ;
Editor(s):
III, Hal Daumé
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
119
Issue:
2020
ISSN:
2640-3498
Page Range / eLocation ID:
7327--7337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems. It uses the probabilities of predicting the top two most-likely classes around an input point under a smoothing distribution to generate a certified radius for a classifier's prediction. However, most smoothing methods do not give us any information about the confidence with which the underlying classifier (e.g., deep neural network) makes a prediction. In this work, we propose a method to generate certified radii for the prediction confidence of the smoothed classifier. We consider two notions for quantifying confidence: average prediction score of a class and the margin by which the average prediction score of one class exceeds that of another. We modify the Neyman-Pearson lemma (a key theorem in randomized smoothing) to design a procedure for computing the certified radius where the confidence is guaranteed to stay above a certain threshold. Our experimental results on CIFAR-10 and ImageNet datasets show that using information about the distribution of the confidence scores allows us to achieve a significantly better certified radius than ignoring it. Thus, we demonstrate that extra information about the base classifier at the input point can help improve certified guarantees for the smoothed classifier. 
    more » « less
  2. Automatic detection of an individual’s mind-wandering state has implications for designing and evaluating engaging and effective learning interfaces. While it is difficult to differentiate whether an individual is mind-wandering or focusing on the task only based on externally observable behavior, brain-based sensing offers unique insights to internal states. To explore the feasibility, we conducted a study using functional near-infrared spectroscopy (fNIRS) and investigated machine learning classifiers to detect mind-wandering episodes based on fNIRS data, both on an individual level and a group level, specifically focusing on automated window selection to improve classification results. For individual-level classification, by using a moving window method combined with a linear discriminant classifier, we found the best windows for classification and achieved a mean F1-score of 74.8%. For group-level classification, we proposed an individual-based time window selection (ITWS) algorithm to incorporate individual differences in window selection. The algorithm first finds the best window for each individual by using embedded individual-level classifiers and then uses these windows from all participants to build the final classifier. The performance of the ITWS algorithm is evaluated when used with eXtreme gradient boosting, convolutional neural networks, and deep neural networks. Our results show that the proposed algorithm achieved significant improvement compared to the previous state of the art in terms of brain-based classification of mind-wandering, with an average F1-score of 73.2%. This builds a foundation for mind-wandering detection for both the evaluation of multimodal learning interfaces and for future attention-aware systems. 
    more » « less
  3. ABSTRACT As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time. 
    more » « less
  4. null (Ed.)
    This paper considers fair probabilistic classification where the outputs of primary interest are predicted probabilities, commonly referred to as scores. We formulate the problem of transforming scores to satisfy fairness constraints while minimizing the loss in utility. The formulation can be applied either to post-process classifier outputs or to pre-process training data, thus allowing maximum freedom in selecting a classification algorithm. We derive a closed-form expression for the optimal transformed scores and a convex optimization problem for the transformation parameters. In the population limit, the transformed score function is the fairness-constrained minimizer of cross-entropy with respect to the optimal unconstrained scores. In the finite sample setting, we propose to approach this solution using a combination of standard probabilistic classifiers and ADMM. Comprehensive experiments comparing to 10 existing methods show that the proposed FairScoreTransformer has advantages for score-based metrics such as Brier score and AUC while remaining competitive for binary label-based metrics such as accuracy. 
    more » « less
  5. Predictive modeling of a rare event using an unbalanced data set leads to poor prediction sensitivity. Although this obstacle is often accompanied by other analytical issues such as a large number of predictors and multicollinearity, little has been done to address these issues simultaneously. The objective of this study is to compare several predictive modeling techniques in this setting. The unbalanced data set is addressed using four resampling methods: undersampling, oversampling, hybrid sampling, and ROSE synthetic data generation. The large number of predictors is addressed using penalized regression methods and ensemble methods. The predictive models are evaluated in terms of sensitivity and F1 score via simulation studies and applied to the prediction of food deserts in North Carolina. Our results show that balancing the data via resampling methods leads to an improved prediction sensitivity for every classifier. The application analysis shows that resampling also leads to an increase in F1 score for every classifier while the simulated data showed that the F1 score tended to decrease slightly in most cases. Our findings may help improve classification performance for unbalanced rare event data in many other applications. 
    more » « less