skip to main content


Search for: All records

Award ID contains: 1915967

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meila, Marina and (Ed.)
    InProceedings{pmlr-v139-si21a, title = {}, author = {}, booktitle = {}, pages = {9649--9659}, We have developed a statistical testing framework to detect if a given machine learning classifier fails to satisfy a wide range of group fairness notions. Our test is a flexible, interpretable, and statistically rigorous tool for auditing whether exhibited biases are intrinsic to the algorithm or simply due to the randomness in the data. The statistical challenges, which may arise from multiple impact criteria that define group fairness and which are discontinuous on model parameters, are conveniently tackled by projecting the empirical measure to the set of group-fair probability models using optimal transport. This statistic is efficiently computed using linear programming, and its asymptotic distribution is explicitly obtained. The proposed framework can also be used to test for composite fairness hypotheses and fairness with multiple sensitive attributes. The optimal transport testing formulation improves interpretability by characterizing the minimal covariate perturbations that eliminate the bias observed in the audit. 
    more » « less
  2. Distributionally Robust Optimization (DRO) has been shown to provide a flexible framework for decision making under uncertainty and statistical estimation. For example, recent works in DRO have shown that popular statistical estimators can be interpreted as the solutions of suitable formulated data-driven DRO problems. In turn, this connection is used to optimally select tuning parameters in terms of a principled approach informed by robustness considerations. This paper contributes to this growing literature, connecting DRO and statistics, by showing how boosting algorithms can be studied via DRO. We propose a boosting type algorithm, named DRO-Boosting, as a procedure to solve our DRO formulation. Our DRO-Boosting algorithm recovers Adaptive Boosting (AdaBoost) in particular, thus showing that AdaBoost is effectively solving a DRO problem. We apply our algorithm to a financial dataset on credit card default payment prediction. Our approach compares favorably to alternative boosting methods which are widely used in practice. 
    more » « less
  3. We provide faster algorithms for approximating the optimal transport distance, e.g. earth mover's distance, between two discrete probability distributions on n elements. We present two algorithms that compute couplings between marginal distributions with an expected transportation cost that is within an additive ϵ of optimal in time O(n^2/eps); one algorithm is straightforward to parallelize and implementable in depth O(1/eps). Further, we show that additional improvements on our results must be coupled with breakthroughs in algorithmic graph theory. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. We focus on robust estimation of the unobserved state of a discrete-time stochastic system with linear dynamics. A standard analysis of this estimation problem assumes a baseline innovation model; with Gaussian innovations we recover the Kalman filter. However, in many settings, there is insufficient or corrupted data to validate the baseline model. To cope with this problem, we minimize the worst-case mean-squared estimation error of adversarial models chosen within a Wasserstein neighborhood around the baseline. We also constrain the adversarial innovations to form a martingale difference sequence. The martingale constraint relaxes the i.i.d. assumptions which are often imposed on the baseline model. Moreover, we show that the martingale constraints guarantee that the adversarial dynamics remain adapted to the natural time-generated information. Therefore, adding the martingale constraint allows to improve upon over-conservative policies that also protect against unrealistic omniscient adversaries. We establish a strong duality result which we use to develop an efficient subgradient method to compute the distributionally robust estimation policy. If the baseline innovations are Gaussian, we show that the worst-case adversary remains Gaussian. Our numerical experiments indicate that the martingale constraint may also aid in adding a layer of robustness in the choice of the adversarial power. 
    more » « less
    Free, publicly-accessible full text available August 20, 2024
  5. This paper shows that dropout training in generalized linear models is the minimax solution of a two-player, zero-sum game where an adversarial nature corrupts a statistician's covariates using a multiplicative nonparametric errors-in-variables model. In this game, nature's least favorable distribution is dropout noise, where nature independently deletes entries of the covariate vector with some fixed probability δ. This result implies that dropout training indeed provides out-of-sample expected loss guarantees for distributions that arise from multiplicative perturbations of in-sample data. The paper makes a concrete recommendation on how to select the tuning parameter δ. The paper also provides a novel, parallelizable, unbiased multi-level Monte Carlo algorithm to speed-up the implementation of dropout training. Our algorithm has a much smaller computational cost compared to the naive implementation of dropout, provided the number of data points is much smaller than the dimension of the covariate vector. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. The goal of this paper is to develop a methodology for the systematic analysis of asymptotic statistical properties of data-driven DRO formulations based on their corresponding non-DRO counterparts. We illustrate our approach in various settings, including both phidivergence and Wasserstein uncertainty sets. Different types of asymptotic behaviors are obtained depending on the rate at which the uncertainty radius decreases to zero as a function of the sample size and the geometry of the uncertainty sets. 
    more » « less
  7. The utility of a match in a two-sided matching market often depends on a variety of characteristics of the two agents (e.g., a buyer and a seller) to be matched. In contrast to the matching market literature, this utility may best be modeled by a general matching utility distribution. In “Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities,” Blanchet, Reiman, Shah, Wein, and Wu consider general matching utilities in the context of a centralized dynamic matching market. To analyze this difficult problem, they combine two asymptotic techniques: extreme value theory (and regularly varying functions) and fluid asymptotics of queueing systems. A key trade-off in this problem is market thickness: Do we myopically make the best match that is currently available, or do we allow the market to thicken in the hope of making a better match in the future while avoiding agent abandonment? Their asymptotic analysis derives quite explicit results for this problem and reveals how the optimal amount of market thickness increases with the right tail of the matching utility distribution and the amount of market imbalance. Their use of regularly varying functions also allows them to consider correlated matching utilities (e.g., buyers have positively correlated utilities with a given seller), which is ubiquitous in matching markets.

     
    more » « less
  8. We consider optimal transport-based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded in the DRO problem (e.g., strong convexity even if the non-DRO problem is not strongly convex, a suitable scaling of the Lagrangian for the DRO constraint, etc., which are crucial for the design of efficient algorithms). As a consequence of these results, one can develop efficient optimization procedures that have the same sample and iteration complexity as a natural non-DRO benchmark algorithm, such as stochastic gradient descent.

     
    more » « less
  9. We revisit Markowitz’s mean-variance portfolio selection model by considering a distributionally robust version, in which the region of distributional uncertainty is around the empirical measure and the discrepancy between probability measures is dictated by the Wasserstein distance. We reduce this problem into an empirical variance minimization problem with an additional regularization term. Moreover, we extend the recently developed inference methodology to our setting in order to select the size of the distributional uncertainty as well as the associated robust target return rate in a data-driven way. Finally, we report extensive back-testing results on S&P 500 that compare the performance of our model with those of several well-known models including the Fama–French and Black–Litterman models. This paper was accepted by David Simchi-Levi, finance. 
    more » « less
  10. https://youtu.be/79Py8KU4_k0 (Ed.)
    We consider statistical methods that invoke a min-max distributionally robust formulation to extract good out-of-sample performance in data-driven optimization and learning problems. Acknowledging the distributional uncertainty in learning from limited samples, the min-max formulations introduce an adversarial inner player to explore unseen covariate data. The resulting distributionally robust optimization (DRO) formulations, which include Wasserstein DRO formulations (our main focus), are specified using optimal transportation phenomena. Upon describing how these infinite-dimensional min-max problems can be approached via a finite-dimensional dual reformulation, this tutorial moves into its main component, namely, explaining a generic recipe for optimally selecting the size of the adversary’s budget. This is achieved by studying the limit behavior of an optimal transport projection formulation arising from an inquiry on the smallest confidence region that includes the unknown population risk minimizer. Incidentally, this systematic prescription coincides with those in specific examples in high-dimensional statistics and results in error bounds that are free from the curse of dimensions. Equipped with this prescription, we present a central limit theorem for the DRO estimator and provide a recipe for constructing compatible confidence regions that are useful for uncertainty quantification. The rest of the tutorial is devoted to insights into the nature of the optimizers selected by the min-max formulations and additional applications of optimal transport projections. 
    more » « less