skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Paleoenvironmental and paleoclimatic evolution and cyclo- and chrono-stratigraphy of upper permian-Lower triassic fluvial-lacustrine deposits in Bogda Mountains, NW China – Implications for diachronous plant evolution across the permian-triassic boundary
Award ID(s):
1714749 1714863 1713787 1714797
PAR ID:
10285223
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Earth-Science Reviews
ISSN:
0012-8252
Page Range / eLocation ID:
103741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, provides a foundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world. 
    more » « less
  2. The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near-continuous, age-constrained succession of high southern paleolatitude (∼65−75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian−Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian−Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian−Spathian floral overturn event in high southern latitudes. 
    more » « less
  3. Permian–Triassic rocks of the Transantarctic Basin provide an unparalleled record of high latitude paleoenvironments and terrestrial vertebrate faunas. Here we summarize the taxonomic and paleoecological implications of the approximately 1300 vertebrate fossils collected since 1968, as well as report on new geologic field observations made during the 2017–18 austral field season. The Fremouw Formation records a vertebrate assemblage taxonomically most similar to that of the Karoo Basin of South Africa, with 10 genera shared in common. However, temnospondyls form a much greater percentage of tetrapod occurrences in the Fremouw Formation, suggesting favorable conditions for these ectothermic fossil amphibians at high latitudes. Lower Triassic small reptiles (viz. Procolophon, Prolacerta) occur in slightly higher proportions than in the Karoo, but their taxonomic diversity is likely undercounted. Seven stratigraphic columns of the upper Buckley and lower–middle Fremouw formations detail fluvial depositional environments in the central Transantarctic region, recording a shift from wet swamp lands to drier floodplains, most similar to Gondwanan basins in Australia. Fremouw Formation paleosols primarily consist of Protosols, which indicate poor soil forming conditions likely due to low precipitation and high sediment supply from crevasse splays. Mineralogy from X-ray diffraction, review of igneous intrusives, and Buckley Formation coal characterization demonstrate post-pedogenic diagenetic alteration that casts doubt on the results of previous stable isotopic studies of these paleosols. Tetrapod fossils first appear in the Fremouw Formation, which has been taken as evidence for immigration to the Antarctic portion of southern Pangea around the time of the end-Permian mass extinction. However, this may be due to higher soil pH, increased base saturation, lower moisture content, and more rapid burial conditions in the Fremouw than the underlying Buckley Formation that favored bone preservation. 
    more » « less