skip to main content


Title: Can supplementary pollen feeding reduce varroa mite and virus levels and improve honey bee colony survival?
Abstract Varroa destructor is an ectoparasitic mite of immature and adult honey bees that can transmit several single-stranded RNA viruses to its host. Varroa reproduce in brood cells, and mite populations increase as colonies produce brood in spring and summer. Mite numbers also can sharply rise, particularly in the fall, by the migration of varroa into hives on foragers. Colonies with high levels of varroa and viruses often die over the winter. Feeding colonies pollen might keep virus levels low and improve survival because of the positive effects of pollen on immunity and colony growth. We compared varroa and virus levels and overwinter survival in colonies with (fed) and without (unfed) supplemental pollen. We also measured the frequency of capturing foragers with mites (FWM) at colony entrances to determine its relationship to varroa and virus levels. Colonies fed supplemental pollen were larger than unfed colonies and survived longer. Varroa populations and levels of Deformed wing virus (DWV) rose throughout the season, and were similar between fed and unfed colonies. The growth of varroa populations was correlated with FWM in fed and unfed colonies, and significantly affected DWV levels. Increasing frequencies of FWM and the effects on varroa populations might reduce the positive influence of supplemental pollen on immune function. However, pollen feeding can stimulate colony growth and this can improve colony survival.  more » « less
Award ID(s):
1716802
NSF-PAR ID:
10311195
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Experimental and Applied Acarology
Volume:
82
Issue:
4
ISSN:
0168-8162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Pathogen transmission between domesticated and wild host species has important implications for community ecology, agriculture, and wildlife conservation. Bumble bees provide valuable pollination services that are vital for both wildflowers and agricultural production. Intense concerns about pathogen spillover from commercial bumble bees to wild bee populations, and the potential harmful effects of pathogen spillback to commercial bees, has stimulated a need for practical strategies that effectively manage bumble bee infectious diseases. Here, we assessed the costs and benefits of a medicinal sunflower pollen diet (Helianthusannuus) on whole‐colony bumble bee disease and performance using commercial colonies of the common eastern bumble bee,Bombus impatiens, and its protozoan pathogen,Crithidia bombi(Trypanosomatida). We first found that a 1:1 mixture of sunflower combined with wildflower pollen reducedC. bombiinfection prevalence and intensity within individualB. impatiensworkers by nearly 4‐fold and 12‐fold, respectively, relative to wildflower pollen. At the colony level, a 1:1 mixture of sunflower and wildflower pollen reducedC. bombiinfection prevalence by 11% averaged over a 10‐week period and infection intensity by 30% relative to wildflower pollen. Colony performance was similar between pollen diets and infection treatments, including the number of workers and immatures produced, and size and weight of workers, drones, and queens. Infection significantly reduced the probability of queen production in colonies fed a pure wildflower pollen diet, but not colonies fed a mixed sunflower pollen diet, suggesting that the medicinal benefits of a mixed sunflower pollen diet can reverse the negative effects of infection on reproductive success. This study provides evidence that sunflower pollen as part of a mixed pollen diet can reduce infection in individual bees and whole colonies with no significant nutritional trade‐offs for colony worker production and most aspects of colony reproduction. A supplemental mixed sunflower pollen diet may provide a simple and effective solution to reduce disease and improve the health of economically and ecologically important pollinators.

     
    more » « less
  2. null (Ed.)
    Abstract Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica , a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee ( Apis mellifera ) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps. 
    more » « less
  3. In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halts and the worker bees live several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having larger fat bodies, high expression levels of vitellogenin (a longevity, nutrition, and immune-related gene), and larger provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory suggests is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in the fall (i.e., lower brood area). We examine that theory here by assessing nurse bee physiology in both the summer and fall, in colonies with varying levels of brood. We find that season is a better predictor of nurse bee physiology than brood area. This finding suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival.

     
    more » « less
  4. In this paper, we use an adaptive modeling framework to model and study how nutritional status (measured by the protein to car- bohydrate ratio) may regulate population dynamics and foraging task allocation of social insect colonies. Mathematical analysis of our model shows that both investment to brood rearing and brood nutri- tion are important for colony survival and dynamics. When division of labour and/or nutrition are in an intermediate value range, the model undergoes a backward bifurcation and creates multiple attrac- tors due to bistability. This bistability implies that there is a threshold population size required for colony survival. When the investment in brood is large enough or nutritional requirements are less strict, the colony tends to survive, otherwise the colony faces collapse. Our model suggests that the needs of colony survival are shaped by the brood survival probability, which requires good nutritional status. As a consequence, better nutritional status can lead to a better survival rate of larvae and thus a larger worker population. 
    more » « less
  5. Abstract

    Honey bee parasites remain a critical challenge to management and conservation. Because managed honey bees are maintained in colonies kept in apiaries across landscapes, the study of honey bee parasites allows the investigation of spatial principles in parasite ecology and evolution. We used a controlled field experiment to study the relationship between population growth rate and virulence (colony survival) of the parasite Varroa destructor (Anderson and Trueman). We used a nested design of 10 patches (apiaries) of 14 colonies to examine the spatial scale at which Varroa population growth matters for colony survival. We tracked Varroa population size and colony survival across a full year and found that Varroa populations that grow faster in their host colonies during the spring and summer led to larger Varroa populations across the whole apiary (patch) and higher rates of neighboring colony loss. Crucially, this increased colony loss risk manifested at the patch scale, with mortality risk being related to spatial adjacency to colonies with fast-growing Varroa strains rather than with Varroa growth rate in the colony itself. Thus, within-colony population growth predicts whole-apiary virulence, demonstrating the need to consider multiple scales when investigating parasite growth-virulence relationships.

     
    more » « less